Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Оценочные материалы по дисциплине

Теория эксперимента в исследованиях систем

по направлению подготовки

24.03.03 Баллистика и гидроаэродинамика

Направленность (профиль) подготовки: **Баллистика и гидроаэродинамика**

Форма обучения **Очная**

Квалификация **Инженер, инженер-разработчик**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП Е.И. Борзенко К.С. Рогаев

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-4 Способен осуществлять контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам

ОПК-5 Способен учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности

ОПК-6 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных, аргументировано защищать результаты выполненной работы

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РООПК-4.1 Знает принципы построения технического задания

РООПК-4.2 Умеет использовать нормативные и справочные данные при разработке проектно конструкторской документации; оформлять проектно-конструкторскую документацию в соответствии со стандартами

РООПК-5.1 Знает методику учета современных тенденций развития техники и технологий в своей профессиональной деятельности

РООПК-5.2 Умеет учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности

РООПК-6.1 Знает основные методы и средства проведения экспериментальных исследований, способы обработки и представления данных, системы стандартизации и сертификации

РООПК-6.2 Умеет выбирать способы и средства измерений и проводить экспериментальные исследования

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- контрольные задания (задачи)

Перечень задач (выполняются в аудитории на практическом занятии, проверяются РООПК-4.1, РООПК-4.2, РООПК-5.1, РООПК-5.2, РООПК-6.1, РООПК-6.2):

Задача 1. Провести математическую обработку серии экспериментов по измерению времени задержки зажигания струи керосина, подаваемой через форсунку в нагретую до заданной температуры камеру сгорания. Время задержки зажигания измеряется с помощью фотодиодов, фиксирующих момент появления пламени. Обработку результатов провести по алгоритму, изученному в Лекции.

Задана таблица экспериментов для температуры в камере сгорания 400° C (673 K); в таблице приведены номера опытов и измеренные значения времени задержки зажигания *tign* (в миллисекундах) для каждого опыта.

Каждому студенту предлагается отдельный вариант:

№ опыта	1	2	3	4	5
t_{ign} , MC	646	580	644	724	618

№ опыта	1	2	3	4	5
t_{ign} , MC	334	346	348	326	336

№ опыта	1	2	3	4	5
t_{ign} , MC	134	152	169	142	183

Задана таблица экспериментов по измерению значения времени осаждения t (в секундах) частицы для каждого опыта.

Каждому студенту предлагается отдельный вариант:

№	t c
опыта	t,c
1	115.0
2	122.0
3	111.2
4	120.8
5	127.4
6	109
7	123.8
8	114.9
9	100.0
10	114.6

№ опыта	t, c
1	6.2
2	6.1
3	6.7
4	5.6
5	4.8
6	5.5
7	4.9
8	5.1
9	4.8
10	4.9

№ опыта	t, c
1	69.0
2	61.5
3	49.6
4	57.2
5	65.6
6	65.4
7	60.5
8	68.8
9	44.6
10	51.1

№ опыта	t, c
1	45.7
2	72.8
3	53.3
4	60.8
5	69.2
6	70.6
7	105
8	66.4
9	65
10	96.2

№ опыта	t,c
1	42.0
2	44.7
3	39.6
4	28.0
5	29.8
6	49.6
7	30.2
8	50.0
9	30.8
10	38.6

№ опыта	t, c
1	4.4
2	6.2
3	4.3
4	4.9
5	4.7
6	5.4
7	6.3
8	4.9
9	5.1
10	6.3

Критерии оценивания:

Результаты выполнения контрольного задания определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено», если задача решена верно - записан правильный ответ (среднее арифметическое и абсолютная погрешность). В остальных случаях оценка «не зачтено»

Задача 2. Получить критериальное уравнение методом анализа размерностей (алгебраическим методом Рэлея) для конкретного физического процесса.

Каждому студенту предлагается отдельный физический процесс:

- гравитационное осаждение шарика в неподвижной среде
- движение твердой частицы в потоке воздуха
- прыжок парашютиста
- режим течения вязкой жидкости
- гидродинамическое сопротивление

- движение газа под действием градиента давления
- слив жидкости из резервуара
- вращение жидкости в сосуде
- падение дождевой капли
- всплытие пузырька газа в вязкой жидкости
- движение капли в потоке воздуха
- процесс каплеообразования в капилляре
- устойчивость вращающейся капли
- точечный взрыв в атмосфере
- падение спускаемой капсулы космического аппарата в океан
- падение тяжелого метеорита
- соударение снаряда с преградой
- сила сопротивления при движении судна
- время тепловой релаксации шара
- измерение температуры среды термопарой
- внедрение нагретого шарика в плавящуюся подложку
- нагрев спускаемой капсулы космического аппарата в атмосфере
- движение твердого тела по инерции

Критерии оценивания:

Результаты выполнения контрольного задания определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено», если задача решена верно - записан правильный ответ (получено верное критериальное уравнение). В остальных случаях оценка «не зачтено»

Задача 3. По представленным ниже экспериментальным данным предложите варианты установления функциональных зависимостей.

Каждому студенту предлагается отдельный вариант:

Число	Коэффициент
Рейнольдса	сопротивления
0.065	217
0.083	173
0.071	230
0.068	221
0.073	239
0.07	235
0.066	260
0.067	260
0.147	84.8
0.12	113.6
0.109	137
0.164	72
0.076	176.5
0.075	116
0.062	208
0.07	197
0.084	173
0.125	118
0.214	69
0.201	61
0.119	112
0.098	133
0.074	210
0.085	168
0.204	60

0.17	70
0.18	66.5
0.16	80
0.16	67
0.17	59
0.11	90
0.145	71
0.14	81.5
0.1	115
0.07	214
0.08	129.5
0.09	133
0.15	65.5
0.09	118
0.1	102
0.09	118
0.12	88.5
0.1	97
0.09	123
0.12	90
7.1·10 ⁻³	1959
0.08	170
0.09	155
0.12	98
0.12	106
0.1	127
0.12	97
0.11	121
0.13	93
0.15	83
0.145	86
0.16	79
0.19	67
0.18	67
0.12	95
0.08	148
0.15	72
0.11	110
0.13	84
0.14	81.5
0.15	72
0.16	71
0.11	106
0.14	69
0.11	88
0.09	123
0.03	247
0.03	87
0.11	07

	1
Число	Коэффициент
Рейнольдса	сопротивления
0.01	1680
0.015	1013
9.3·10 ⁻³	1626
0.021	926
0.016	1087
0.018	779
0.074	165
0.055	297
0.072	251
0.035	478
0.024	840
0.026	869
0.038	410
0.018	995
0.033	489
0.032	588
0.032	662
0.095	192
0.093	219
0.071	293
0.092	206
0.12	158
0.1	205
0.109	172
0.095	226
0.136	137
0.158	126
	

Исследовать зависимость скорости осаждения стеклянных шариков (диаметром 1.07 мм) от количества шариков

Результаты эксперимента для и=0.4 Па•с

1 033111	1 csymbiath skenephmenta gan a vitta e									
№ оп	ыта	N=1		N=3		N=5		N=7		
		t, c	u, c M/c	t, c	u, c M/c	t, c	u, c M/c	t, c	u, cM/c	
1		67.9	0.22	41.8	0.36	38.8	0.39	26.1	0.57	
2		81.6	0.18	42	0.36	33.7	0.44	29.7	0.5	
3		71.4	0.21	68.7	0.22	31.6	0.47	31.3	0.48	
4		70.6	0.21	40.3	0.37	33.3	0.45	29.3	0.51	

5	72.6	0.21	38.3	0.39	30	0.5	29.9	0.5
6	83.7	0.18	37.7	0.4	38.3	0.39	28.7	0.52
7	77.9	0.19	44	0.34	33.6	0.45	25.3	0.59
8	84.7	0.18	45.2	0.33	33.5	0.45	29	0.52
9	74	0.2	40.8	0.38	31.9	0.47	25.3	0.59
10	65.2	0.23	45.7	0.33	30.2	0.5	26.1	0.57
$u_{cpednee}, cM/c$	0.20±0.01		0.35±0.03		0.45±0.02		0.53±0.02	
$\delta,\%$	5		8		5		4	

N – число частиц;

Исследовать зависимость скорости осаждения стеклянных шариков (диаметром 1.07 мм) от количества шариков

Результаты эксперимента для µ=0.3 Па·с

№ опыта	N=1		N=3		N=5		N=7	
	t, c	u, c M/c	t, c	u, c M/c	t, c	u, c M/c	t, c	$u, c_M/c$
1	52.6	0.342	57	0.316	30.3	0.594	24.2	0.744
2	67.6	0.266	36.1	0.499	34.9	0.516	26.3	0.684
3	60.4	0.298	43	0.419	29	0.621	24.4	0.738
4	59.5	0.302	46.9	0.384	29.7	0.606	28.8	0.625
5	59	0.305	354	0.508	28.3	0.636	24.4	0.738
6	66.8	0.269	34.2	0.526	30.7	0.586	34	0.529
7	56.3	0.320	38.3	0.470	26.4	0.682	23.5	0.766
8	62.6	0.287	37.7	0.477	29.7	0.606	25	0.720
9	61.3	0.294	38.8	0.464	27.4	0.657	26.9	0.669
10	60.1	0.299	35.3	0.510	28.1	0.640	23.9	0.753
$u_{cpednee}, c_M/c$	0.30±0.0)1	0.47 ± 0.0)3	0.61±0.0)3	0.70 ± 0.0)4
δ ,%	3		6		5		6	

N – число частиц;

Исследовать зависимость скорости осаждения стеклянных шариков (диаметром 1.07 мм) от количества шариков

Результаты эксперимента для ц=0.034 Па•с

Результаты эксперимента для µ=0.034 Па·с									
№ опыта	N=1		N=	N=3		N=5		N=7	
	t, c	u, c M/c	t, c	u, c M/c	t, c	u, c M/c	t, c	u, c M/c	
1	26.3	0.65	18.3	0.93	13	1.31	10.3	1.65	
2	29.3	0.58	16.7	1.02	12	1.42	15	1.13	
3	25	0.68	18.3	0.93	13.2	1.29	12.9	1.32	
4	26.2	0.65	17.7	0.96	13.2	1.29	13.2	1.29	
5	22.6	0.75	17	1	14.3	1.19	12.9	1.32	
6	27.5	0.62	17.6	0.96	16.3	1.04	12.6	1.35	
7	22.7	0.75	14.5	1.17	12.4	1.37	12.4	1.37	
8	25	0.68	19.4	0.88	15	1.13	12	1.42	
9	30	0.57	14.7	1.16	14.7	1.16	13.3	1.28	
10	27.2	0.625	15	1.13	12.5	1.36	11.8	1.44	
$u_{cpednee}, cM/c$	0.66 ± 0.0)4	1.01±0.0)6	1.30±0.0)6	1.36±0.0	08	
δ ,%	5		6		4		6		

 $[\]delta$ - относительная погрешность.

 $[\]delta$ - относительная погрешность.

N – число частиц;

 δ - относительная погрешность.

Критерии оценивания:

Результаты выполнения контрольного задания определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено», если задача решена верно - записан правильный ответ (найдена оптимальная функциональная зависимость). В остальных случаях оценка «не зачтено»

Задание 4. Рассчитать время тепловой релаксации термопары по заданному алгоритму. Каждому студенту предлагается отдельный материал термопары и температуры окружающей среды.

- Вариант 1. Температура измеряемой среды 100К
- Вариант 2. Температура измеряемой среды 200К
- Вариант 3. Температура измеряемой среды 300К
- Вариант 4. Температура измеряемой среды 400К
- Вариант 5. Температура измеряемой среды 600К
- Вариант 6. Температура измеряемой среды 800К
- Вариант 7. Температура измеряемой среды 1000К
- Вариант 8. Температура измеряемой среды 1200К

Критерии оценивания:

Результаты выполнения контрольного задания определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено», если задача решена верно - записан правильный ответ). В остальных случаях оценка «незачтено»

Задача 5. Решить обратную задачу гидродинамики. Каждому студенту предлагается отдельный вариант

- Вариант 1. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости гравитационного осаждения u стального шарика диаметром D_p =6.75 мм и плотностью ρ_p =7753 кг/м³: u=(5.30 \pm 0.02) \cdot 10⁻³ м/с. Плотность жидкости ρ =975 кг/м³.
- Вариант 2. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости гравитационного осаждения u стального шарика диаметром D_p =8.73 мм и плотностью ρ_p =7753 кг/м³: u=(8.70 ± 0.02)·10⁻³ м/с. Плотность жидкости ρ =975 кг/м³.
- Вариант 3. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости гравитационного осаждения u стального шарика диаметром D_p =15.1 мм и плотностью ρ_p =7753 кг/м³: u=(24.90 ± 0.02) · 10⁻³ м/с. Плотность жидкости ρ =975 кг/м³.
- Вариант 4. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости гравитационного осаждения u алюминиевого шарика диаметром D_p =3.1 мм и плотностью ρ_p =2835 кг/м³: u=(5.89 \pm 0.02) \cdot 10⁻³ м/с. Плотность жидкости ρ =1260 кг/м³.

- Вариант 5. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости гравитационного осаждения u стального шарика диаметром D_p =3 мм и плотностью ρ_p =7905 кг/м³: u=(3.09 \pm 0.03) \cdot 10⁻³ м/с. Плотность жидкости ρ =970 кг/м³.
- Вариант 6. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости всплытия u пузырька воздуха диаметром D_p =2 мм и плотностью ρ_p =1.205 кг/м³: u=(2.5 ± 0.02)·10⁻³ м/с. Плотность жидкости ρ =1265 кг/м³.
- Вариант 7. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости всплытия u пузырька воздуха диаметром D_p =1.5 мм и плотностью ρ_p =1.205 кг/м³: u=(1.72 ± 0.02) · 10⁻³ м/с. Плотность жидкости ρ =1265 кг/м³.
- Вариант 8. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости всплытия u пузырька воздуха диаметром D_p =1 мм и плотностью ρ_p =1.205 кг/м³: u=(0.69 \pm 0.03) \cdot 10⁻³ м/с. Плотность жидкости ρ =1265 кг/м³.
- Вариант 8. Определить коэффициент динамической вязкости жидкости по экспериментальным данным для скорости всплытия u пузырька воздуха диаметром D_p =2.5 мм и плотностью ρ_p =1.205 кг/м³: u=(3.31 \pm 0.03) \cdot 10⁻³ м/с. Плотность жидкости ρ =1265 кг/м³.

Критерии оценивания:

Результаты выполнения контрольного задания определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено», если задача решена верно - записан правильный ответ. В остальных случаях оценка «не зачтено»

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет в девятом семестре проводится в устной форме. Билет состоит из двух теоретических вопросов, проверяющих РООПК-4.1, РООПК-4.2, РООПК-5.1, РООПК-5.2, РООПК-6.1, РООПК-6.2.

Перечень первых теоретических вопросов:

- 1. Основные принципы математического моделирования
- 2. π-теорема
- 3. Типы погрешностей измерений.
- 4. Основные принципы физического моделирования.
- 5. Основные понятия теории погрешностей измерения.
- 6. Критерий Стьюдента.
- 7. Измерение динамических величин.
- 8. Фазово-частотные характеристики.
- 9. Динамические погрешности.
- 10. Критерии подобия.
- 11. Динамические характеристики средств измерений.

- 12. Получение критериев подобия методом анализа дифференциальных уравнений.
- 13. Основы теории подобия.
- 14. Отличие прямых и обратных задач математической физики.
- 15. Основные понятия анализа размерностей.

Перечень вторых теоретических вопросов:

- 1. Передаточные функции средств измерений.
- 2. Основные критерии подобия в гидродинамике и теплообмене.
- 3. Получение критериев подобия методом Рэлея.
- 4. Динамические свойства систем первого порядка.
- 5. Динамические свойства систем второго порядка.
- 6. Обработка результатов прямых измерений.
- 7. Обратные задачи в теории эксперимента.
- 8. Основные принципы физического моделирования.
- 9. Обработка результатов косвенных измерений.
- 10. Типовые детерминированные сигналы.
- 11. Доверительный интервал и доверительная вероятность.
- 12. Основные методы решения обратных задач.
- 13. Обратные задачи теплообмена.
- 14. Запись результатов измерений.

Критерии оценивания:

Результаты зачета определяются, как «зачтено», «не зачтено».

«Зачтено» выставляется, если даны правильные, развернутые ответы на все вопросы в билете, студент владеет знаниями дисциплины почти в полном объеме программы; при наводящих вопроса дает самостоятельные ответы.

«Не зачтено» выставляется, если проявляет затруднения в самостоятельных ответах, оперирует неточными формулировками; в процессе ответов допускаются ошибки по существу вопросов; студент не освоил обязательного минимума знаний предмета, не способен ответить на вопросы билета даже при дополнительных наводящих вопросах экзаменатора.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Письменный опрос проверяет РООПК-4.1, РООПК-4.2, РООПК-5.1, РООПК-5.2, РООПК-6.1, РООПК-6.2.

$\mathcal{N}\!$	Вопрос	Ответ
1	Дайте определение понятию	
	«физическое моделирование».	
2	Перечислите преимущества и	
	недостатки математического и	
	физического моделирования	
	систем.	
3	В чем состоит приближение	
	пограничного слоя при	
	математическом моделировании	
	течений сплошных сред?	
4	Записать формулу для числа	
	Рейнольдса и объяснить	
	физический смысл этого	
	критерия подобия.	
5	Для чего используется	
	коэффициент Стьюдента и от	

	каких параметров он зависит?	
6	Приведите формулу для выбора	
	числа измерений.	
7	Укажите правильные формы	
	записи результатов измерений:	
	а) <i>x</i> =(3.963±0.005) м	
	б) <i>x</i> =5.34 м ± 5 кг	
	B) $x=(6.3\pm0.2)$ c	
	г) <i>t</i> =(15.45±0.05) с	
	д) x=(11±0.3) кг	
	e) $x=(14.8\pm0.03)$ M	
	ж) <i>x</i> =(5.80±0.01) кг	
	з) <i>t</i> =(2100±40) мс	
	и) <i>T</i> =(2.35±0.03)·10 ³ К	
8	К какой группе критериев	
	относится число Фруда Fr?	
	Объясните физический смысл	
	этого критерия.	
9	Какие типы планов при	
	проведении экспериментов Вам	
	известны?	
10	Из каких соображений	
	выбирается класс эмпирической	
	функции при аппроксимации	
	экспериментальных данных?	

Критерии оценивания: считается пройденным, если даны верные ответы на 5 любых вопросов из 10 предложенных.

Информация о разработчиках

Усанина Анна Сергеевна, к.ф.-м.н., доцент, ТГУ, доцент кафедры Динамики полета