Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Операционные системы

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-12 Способен администрировать операционные системы и выполнять работы по восстановлению работоспособности прикладного и системного программного обеспечения.

ОПК-2 Способен применять программные средства системного и прикладного назначений, в том числе отечественного производства, для решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-12.1 Понимает принципы организации, состав и схемы работы операционных систем

ИОПК-12.2 Выбирает режимы работы операционных систем, проводит работы по конфигурированию и исправлению ошибок конфигурации средств управления операционных систем, выполняет действия по выявлению и устранению сбоев в операционных системах

ИОПК-12.3 Проводит анализ сбоев функционирования, выбирает способы восстановления работоспособности прикладного и системного программного обеспечения

ИОПК-2.1 Понимает базовые принципы функционирования программных средств системного и прикладного назначений, в том числе отечественного производства, используемых для решения задач профессиональной деятельности

ИОПК-2.2 Определяет порядок настройки и эксплуатации программных средств системного и прикладного назначений, в том числе отечественного производства, используемых для решения задач профессиональной деятельности

ИОПК-2.3 Формулирует предложения по применению программных средств системного и прикладного назначений, в том числе отечественного производства, используемых для решения задач профессиональной деятельности

2. Задачи освоения дисциплины

- Освоить принципы организации и архитектурные решения при построении мультипрограммных многопроцессорных операционных систем и системных оболочек, стратегий и алгоритмов управления ресурсами BC, способов виртуализации ресурсов BC.
- Научиться применять знания об операционных системах для создания надежной, производительной и комфортной среды разработки, внедрения и эксплуатации приложений и сервисов в заданных условиях.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в «Модуль «Компьютерные науки».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Пятый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Архитектура вычислительных систем, Дискретная математика, Информатика.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 48 ч.
- -лабораторные: 32 ч.
 - в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Функции и архитектурные требования к ОС

Эволюция операционных систем (ОС). Классификация ОС. Клиентские и серверные ОС. ОС пакетной обработки. ОС реального времени. Жесткие и мягкие (гибкие) системы реального времени. ОС с разделением времени. Интерактивные ОС. Специализированные и встроенные ОС. Сетевые корпоративные ОС. Многопроцессорные ОС. Аппаратные, программные и информационные ресурсы вычислительной системы. Функции ОС. Эксплуатационные требования к ОС. Службы и сервисы ОС. Монолитные и многоуровневые (многослойные) системы. Ядро (супервизор) ОС. Функции супервизора. Вспомогательные модули ОС. Средства аппаратной поддержки ОС. Машинно-зависимые компоненты ОС. Концепция микроядерной архитектуры ОС.

Тема 2. Процессы и потоки, синхронизация процессов

Понятие процесса и потока. Свойства процесса. Реализация процесса. Дескриптор процесса. Модель потока. Взаимодействие процессов. Критический ресурс. Критический участок процесса. Синхронизация процессов с помощью элементарных приемов нижнего уровня. Аппаратные неделимые операции "Блокировка памяти" и "Проверить и установить". Алгоритм Деккера. Семафоры общие и двоичные. Синхронизация процессов на двоичных семафорах. Задача "Поставщик-потребитель". Мьютексы. Синхронизация процессов с помощью приемов верхнего уровня. Монитор Хоара. Почтовые ящики. Барьеры. События и сигналы. Монитор, основанный на управляющей структуре «Таблица синхронизации». Управление процессами на основе таблицы синхронизации. Процедуры ТР, ТV, WAIT, POST. Процесс CLOCK. Определение тупика. Условия возникновения тупиков. Предотвращение тупиков, основанное на нарушении одного из условий возникновения тупика. Динамический обход тупиков. Алгоритм банкира для одного и нескольких видов ресурсов. Обнаружение тупиков. Восстановление после тупиков.

Тема 3. Распределение времени процессора между конкурирующими процессами Состояния процесса. Методы планирования в мультипрограммных системах. Вытесняющее и не вытесняющее планирование. Разделение времени. Квантование времени. Планирование в системах пакетной обработки. Планирование в интерактивных системах. Планирование по наивысшему приоритету. Круговорот. Очереди с обратной связью. Многоуровневые очереди с обратной связью. Планирование в системах реального времени.

Тема 4. Управление оперативной памятью

Именующая функция. Функция памяти. Функция содержимого. Способы объединения модулей. Динамическое связывание модулей. Распределение памяти. Статическое и динамическое распределение. Стратегии распределения памяти. Перекрытие программ. Попеременная загрузка заданий. Сегментация программ. Страничная организация памяти. Сегментация в сочетании со страничной организацией

памяти. Статическое и динамическое установление связей. Фрагментация памяти. Внешняя и внутренняя фрагментация. Кэширование адресуемых объектов и отображений виртуальных (логических) адресов на реальные. Реализация однозначности входа в кэшируемое отображение «Логический адрес – Физический адрес» объекта.

Тема 5. Виртуальная память

Многоуровневая организация виртуальной памяти. Стратегии распределения памяти для сегментов переменной длины. Список свободной памяти, способы его организации. Списки пустот, упорядоченные по адресам, по размеру пустоты. Списки пустот, организованные в виде системы расщепления. Уплотнение. Стратегии распределения для страниц фиксированной длины. Стратегии подкачек страниц. Подкачка по запросу. Опережающая подкачка. Стратегии вытеснения страниц.

Тема 6. Управление внешней памятью

Планирование работы с магнитными дисками. Цели и принципы планирования. Оптимизация времени поиска цилиндра. Оптимизация времени ожидания записи. Конфигурирование подсистемы внешней памяти вычислительной системы (ВС). Функции файловой системы. Многоуровневая организация системы управления файлами. Порты ввода-вывода. Ввод-вывод, отображаемый на адресное пространство оперативной памяти. Многослойная модель подсистемы ввода-вывода. Логическая и физическая организация файловой системы. Блокировка записей. Буферизация (кэширование операций ввода/вывода). Способы организации файлов. Файловые операции. Методы доступа к записям файла (синхронный/асинхронный, последовательный/прямой). Дескриптор файла. Целостность файловых систем. Избыточные дисковые RAID-системы.

Тема 7. Принципы оценки производительности вычислительной системы

Цели исследований и показатели производительности. Пиковая и реальная производительность. Методы оценки производительности. Тесты производительности: производителей, стандартные, пользователей. Стандартные тесты: iCOMP, SPECxx, Linpack, TPC, WebStone.

Тема 8. Защита объектов ОС

Статус защиты. Защита паролями. Требования к ОС по безопасности. Внешняя безопасность. Операционная безопасность. Полномочия и объектно-ориентированные системы. Активные и пассивные элементы сферы защиты. Объекты защиты. Субъекты доступа к защищаемым объектам. Домены и возможности. Описание статуса защиты. Атрибуты доступа. Управление статусом защиты. Матричное представление статуса защиты. Списки возможностей. Списки управления доступом. Механизм «замок-ключ». Криптография. Криптографические секретные системы. Шифр. Системы с открытыми ключами. Цифровые подписи. Схемы шифрования.

Тема 9. Организация мультипроцессорных ОС

Вычислительные системы с однородной (сосредоточенной) и неоднородной (распределенной) памятью. SMP – симметричная многопроцессорная обработка. CMP – перестраиваемая симметричная многопроцессорная обработка. МРР – многопроцессорная архитектура с распределенной памятью (массовый параллелизм). Кластеры виртуализации МРР-систем. Архитектура cc-NUMA. Средства разновидность вычислительных систем. Средства разработки параллельных программ. Модель программирования для ВС с общей (разделяемой) памятью UMA (стандарт Open MP). Модель программирования для BC с распределенной памятью NUMA (стандарт MPI). Неявная (аппаратная) когерентность для сосредоточенной и распределенной памяти. Модели состоятельности многоуровневой памяти. Алгоритм MESI для сосредоточенной памяти. Алгоритм DASH для распределенной памяти. Явная (программная) когерентность для BC с массовым параллелизмом. Масштабируемый когерентный интерфейс SCI. Типы мультипроцессорных OC (MOC). Модель мультипроцессорной OC с индивидуальной OC для каждого процессора. Модель асимметричной мультипроцессорной OC «хозяинподчиненный». Модель симметричной мультипроцессорной OC. Планирование времени мультипроцессора для несвязанных и связанных процессов. Родственное планирование. Бригадное планирование.

Тема 10. Коммуникационные средства многомашинных систем

Обмен сообщениями (парадигма ввода-вывода). Вызов удаленных процедур. Распределенная память совместного пользования. Средства взаимодействия распределенных ВС. ПО, основанное на документе. ПО, основанное на распределенной файловой системе. Модель переноса файлов. Именование объектов. Семантика совместного использования файлов. ПО, основанное на совместно используемых объектах. ПО, основанное на координации. Природа параллелизма компьютерных вычислений. Средства разработки параллельных программ. Методы реализации когерентности многоуровневой памяти. Модели состоятельности памяти. Коммуникационное ПО распределенных систем (компьютерных сетей).

Тема 11. Технологии виртуализации

Цели и решения. Виртуальная инфраструктура. Доменная архитектура многопроцессорных вычислительных систем (ВС). Системные и прикладные разделы ВС. Разделение ВС на классы приложений. Применения технологий виртуализации: разработка и тестирование ПО; моделирование работы реальных систем на исследовательских стендах; консолидация серверов с целью повышения эффективности использования оборудования; консолидация серверов в рамках решения задач поддержки унаследованных приложений; демонстрация и изучение нового ПО; развертывание и обновление прикладного ПО в условиях действующих информационных систем; работа на ПК с разнородными операционными средами. Эмуляция аппаратная и программная. Модульный состав эмулятора.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, проверка теоретических вопросов по лекционному материалу, выполнения и презентации домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Практическая подготовка оценивается по результатам выполненных лабораторных работ.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в пятом семестре проводится в письменной форме по билетам. Экзаменационный билет включает теоретические вопросы, оценивающие достижение запланированных индикаторов, решение практических задач и интерпретацию полученных результатов. Продолжительность экзамена 1,5 часа.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если даны правильные развернутые ответы на теоретические вопросы. Студент показал творческое отношение к обучению, в совершенстве овладел всеми теоретическими вопросами построения и анализа

операционных систем и их компонент, показал все требуемые умения и навыки в работе с дополнительными источниками информации и Интернет-ресурсами;

Оценка «хорошо» выставляется, если студент овладел всеми теоретическими вопросами построения различных архитектурных моделей операционных систем и системных процессов обработки данных, частично овладел навыками анализа эффективности различных стратегий управления ресурсами вычислителя;

Оценка «удовлетворительно» выставляется, если студент имеет недостаточно глубокие знания по теоретическим разделам дисциплины, недостаточно владеет навыками сравнительного анализа различных архитектурных реализаций операционных систем и их отдельных подсистем;

Оценка «неудовлетворительно» выставляется, если студент имеет существенные пробелы по отдельным теоретическим разделам дисциплины и не владеет навыками содержательного анализа методов построения операционных систем.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в среде электронного обучения IDO https://lms.tsu.ru/course/view.php?id=9861
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине. (https://www.tsu.ru/sveden/education/eduop/).
 - г) Методические указания по организации самостоятельной работы студентов.

При выполнении самостоятельной работы студенты должны повторить пройденные лекционные материалы и ознакомиться по дополнительной литературе и из ресурсов сети интернет с пройденными темами.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Олифер В.Г., Олифер Н.А. Сетевые операционные системы. 2-е изд. СПб.: Питер, 2009.669 с.
- Танненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2019.-1120 с.
 - б) дополнительная литература:
- Назаров С.В., Широков А.И. Современные операционные системы 2-е изд. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 352 с.
- Замятин А.В., Сущенко С.П. Операционные системы. Томск: Издательство Томского государственного университета, 2020.-220 с.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (ЕМИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения лекций, лабораторных занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Сущенко Сергей Петрович, д-р техн. наук, профессор, кафедра прикладной информатики ИПМКН ТГУ, заведующий кафедрой.