Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Численные методы в механике сплошной среды

по направлению подготовки

16.04.01 Техническая физика

Направленность (профиль) подготовки: **Компьютерный инжиниринг высокоэнергетических систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП А.Ю. Крайнов А.В. Шваб Л.Л. Миньков

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен к профессиональной эксплуатации современного научного и технологического оборудования и приборов в своей профессиональной деятельности;.

ОПК-2 Способен использовать углубленные теоретические и практические знания фундаментальных и прикладных наук, в том числе технической физики.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 1.1 Знать основные типы современной физической, аналитической и технологической аппаратуры различного назначения, ее возможности для решения конкретных задач в различных областях технической физики
- ИОПК 1.2 Уметь самостоятельно осваивать современную физическую, аналитическую и технологическую аппаратуру различного назначения и работать на ней
- ИОПК 1.3 Владеть навыками профессиональной эксплуатации современного научного и технологического оборудования и приборов различного назначения, используемых для решения конкретных задач в различных областях технической физики.
- ИОПК 2.1 Знать фундаментальные законы природы, основные законы и понятия естественно- научных и общеинженерных дисциплин.
- ИОПК 2.2 Уметь на основе знаний по профильным разделам математических и естественно-научных дисциплин формировать собственные суждения при решении конкретных задач теоретического и прикладного характера.
- ИОПК 2.3 Владеть навыками использования знаний физики и математики при решении практических задач в различных областях технической физики.

2. Задачи освоения дисциплины

-) формирование современного представления об основных подходах и методах численного решения в механике сплошных сред.
- 2) изучить методы численного решения в механике сплошных сред;
 - 3) Познакомиться с применением методов численного решения в механике сплошных сред для проектирования высокоэнергетических систем.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Аддитивные технологии и компьютерное моделирование в технической физике».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Обобщенные криволинейные координаты

Преобразование координат. Аппроксимация параметров преобразования. Структура типичных уравнений в обобщенных координатах. Уравнения в частных производных первого и второго порядков. Уравнение движения жидкости.

Тема 2 Построение криволинейной системы координат.

Физические аспекты. Односвязные и многосвязные области. ...

Тема 3. Построение КСК при помощи алгебраического отображения.

Одномерные функции растяжения. Применение методов в случае двух границ. Метод многих поверхностей. Трансфинитная интерполяция.

Тема 4 Построение КСК на основе решения уравнения в частных производных.

Последовательные конформные отображения. Построение ортогональных сеток. Решение эллиптических уравнений в частных производных.

Тема 5. Методы решений уравнений Эйлера.

Система уравнений описывающих движение идеального газа. Постановка граничных условий для систем гиперболических уравнений. Модификация Чакраварти системы уравнений для постановки граничных условий. Схема Бима-Уорминга.

Тема 6. Приемы и методы решений уравнений пограничного слоя.

Система уравнений, описывающая движение газа при наличии пограничного слоя. Основные допущения. Основные разностные схемы. Методы определения коэффициентов в разностных схемах.

Тема 7. Приемы и методы решений уравнений сжимаемого вязкого газа.

Система уравнений Навье – Стокса. Способы решения полных уравнений Навье-Стокса. Схемы явные и неявные. Проблемы устойчивости. Факторизованная схема Бима-Уорминга. Использование Обобщенных координат.

Тема 8. Приемы и методы решений уравнений несжимаемого вязкого газа.

Система уравнений несжимаемой жидкости. Основные допущения. Использование переменных завихренность-функция тока. Особенности постановки граничных условий. Решение в естественных переменных. Метод Патанкара.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» http://lms.tsu.ru/course/view.php?id=24760
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Построение криволинейных систем координат. Учебно-методическое пособие по курсу «Численные методы механики сплошной среды» для студентов физикотехнического факультета / Нариманов Р.К., Нариманова Г.Н., Еремин И.В Изд-во ТГУ- 2019-34c.
 - г) Метод сопряженных градиентов. Многосеточный метод. Учебно-методическое пособие по курсу «Численные методы механики сплошной среды» для студентов физико-технического факультета / Нариманов Р.К., Нариманова Г.Н., Еремин И.В Изд-во ТГУ- 2019-18c.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. С.К. Годунов, В.С. Рябенький. Разностные схемы. М.: Наука, 1977.
- 2. У.Г. Пирумов, Г.С. Росляков. Численные методы газовой динамики. М.: Высшая школа, 1987.
- 3. К Флетчер. Вычислительные методы в динамике жидкостей. М.: Мир, 1-2 т., 1991.
- 4. Д.Андерсон, Дж. Таннеилл, Р. Плетчер. Вычислительная гидромеханика и теплообмен. М.:Мир, 1,2.тт.,1990г).

б) дополнительная литература:

- 1. Зализняк В.Е. Основы вычислительной математики. Часть 1. М.-Ижевск. 2004.
- 2. В.И. Пинчуков, Ч.-В. Шу. Численные методы высоких порядков для задач аэрогидродинамики. Новосибирск: Изд-во СО РАН, 2000.
- 3. А.Н. Гильманов. Методы адаптивных сеток в задачах газовой динамики. М: Физматлит, 2000.
- 4. А.Г. Куликовский, Н.В. Погорелов, А.Ю. Семенов. Математические вопросы численного решения гиперболических систем уравнений. М: Физматлит, 2001.

в) ресурсы сети Интернет:

– Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

а) лицензионное и свободно распространяемое программное обеспечение:

- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 96C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Нариманов Ринат Казбекович, кандидат физико-математических наук, доцент кафедры прикладной аэромеханики.