Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Нестационарные режимы горения конденсированных систем

по направлению подготовки

16.04.01 Техническая физика

Направленность (профиль) подготовки: **Компьютерный инжиниринг высокоэнергетических систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП А.Ю. Крайнов А.В. Шваб Л.Л. Миньков

Председатель УМК В.А. Скрипняк

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен использовать углубленные теоретические и практические знания фундаментальных и прикладных наук, в том числе технической физики;.
- ПК-1 Способен составлять теплофизические модели профессиональных задач по определению теплового режима на практике, находить способы их решения и интерпретировать профессиональный, физический смысл полученного математического результата.
- ПК-3 Способен самостоятельно применять знания на практике по обработке и анализу научно-технической информации и результатов исследований, экспериментов и наблюдений.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Знать фундаментальные законы природы, основные законы и понятия естественно- научных и общеинженерных дисциплин.
- ИОПК 2.2 Уметь на основе знаний по профильным разделам математических и естественно-научных дисциплин формировать собственные суждения при решении конкретных задач теоретического и прикладного характера.
- ИОПК 2.3 Владеть навыками использования знаний физики и математики при решении практических задач в различных областях технической физики.
- ИПК 1.1 Знать фундаментальные законы теплофизики и их математическое описание применительно к определению тепловых режимов РКТ.
- ИПК 1.2 Уметь составлять математические модели профессиональных задач в области теплофизики и находить способы их решения.
- ИПК 1.3 Владеть навыками численного, компьютерного моделирования задач теплофизики и анализа и интерпретации получаемых результатов.
- ИПК 3.1 Знать как осуществить и организовать сбор, анализ и систематизацию информации по проблеме исследования
- ИПК 3.2 Уметь анализировать, интерпретировать, оценивать, представлять результаты проектов планов и программ проведения отдельных этапов работ.
- ИПК 3.3 Владеть способами подготовки элементов документации и проведением отдельных этапов работ.

2. Задачи освоения дисциплины

- Получить представления об основных закономерностях процессов нестационарного горения конденсированных веществ.
- Получить представления об анализе основных характеристик реакционноспособных конденсированных веществ.
- Научиться основным принципам построения детерминированных моделей нестационарного горения конденсированных систем.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Макрокинетика горения высокоэнергетических материалов».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Процессы теплопередачи в технических устройствах

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

- Тема 1. Классификация нестационарных режимов горения конденсированных систем.
 - Тема 2. Стационарный режим горения конденсированных систем.
- Тема 3. Феноменологическая теория нестационарного горения конденсированных систем.
- Тема 4. Экспериментальные методы исследования нестационарной скорости горения.
 - Тема 5. Процессы гашения конденсированных систем
 - Тема 6. Горение конденсированных систем в условиях обдувающего потока
 - Тема 7. Неустойчивые режимы горения конденсированных систем
 - Тема 8. Горение конденсированных систем в поле перегрузок
 - Тема 9. Регулируемые РДТТ
- Тема 10. Современные подходы к моделированию нестационарного горения конденсированных систем

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, выполнения элементов курса в образовательной электронной среде, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из одной части. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

a) Электронный учебный курс по дисциплине в электронном университете «iDO» - https://lms.tsu.ru/course/view.php?id=24753

б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Теория горения и взрыва : учебник и практикум / О. Г. Казаков [и др.] ; под общ. ред. А. В. В. Тотая, О. Г. Казакова. 2-е изд., перераб. и доп. М. : Юрайт, 2013. 295 с.: табл. Режим доступа ЭБС Юрайт: http://www.biblio-online.ru/book/354A00F4-FD02-410C-8625-9B1B5FB688DE
- 2. Кукин П. П. Теория горения и взрыва : учебное пособие / П. П. Кукин, В. В. Юшин, С. Г. Емельянов ; Юго-Западный гос. ун-т, Российский гос. технологический ун-т им. К. Э. Циолковского (МАТИ-РГТУ). М. : Юрайт, 2012, 2015. 435 с. Режим доступа ЭБС Юрайт: http://www.biblio-online.ru/book/D0802775-6B48-47B8-B11F-C701C1950FA8.
- 3. Архипов В.А., Бондарчук С.С., Жуков А.С. Нестационарные режимы горения конденсированных систем. Национальный исследовательский Томский государственный университет, Томск. 252 с.

Научные статьи из журналов «Физика горения и взрыва», «Теплофизика и аэромеханика», «Инженерно-физический журнал».

- б) дополнительная литература:
- 1. Зельдович Я.Б., Лейпунский О.И., Либрович В.Б. Теория нестационарного горения пороха. М.: Наука, 1975. 137 с.
- 2. Соломонов Ю.С., Липанов А.М., Алиев А.В., Дорофеев А.А., Черепов В.И. Твердотопливные регулируемые двигательные установки. М.: Машиностроение, 2011. 416 с.
- 3. Соркин Р.Е. Теория внутрикамерных процессов в ракетных системах на твердом топливе. М.: Наука, 1983. 288 с.
- 4. Алиев А.В., Амарантов Г.И., Вахрушев А.В. Внутренняя баллистика РДТТ / под ред. А.М. Липанова, Ю.М. Милёхина. М.: Машиностроение, 2007. 504 с.
- 5. Ерохин Б.Т. Теория внутрикамерных процессов и проектирование РДТТ: Учебник для высших технических учебных заведений. М.: Машиностроение. 1991. 560 с.
- 6. Ассовский И. Г. Физика горения и внутренняя баллистика : [учебное пособие] / И. Г. Ассовский ; Рос. акад. наук, Ин-т хим. физики им. Н. Н. Семенова ; [отв. ред. А. М. Липанов]. М. : Наука, 2005. 357 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, ЯндексДиск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 96C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Порязов Василий Андреевич, к.ф.-м.н., доцент кафедры математической физики ФТФ ТГУ