Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Микроконтроллеры

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки/ специализация: **Радиоэлектронные системы передачи информации**

Форма обучения **Очная**

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-9 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.
- ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 9.1 Применяет современные инструментальные системы программирования и компьютерного моделирования при решении прикладных задач.
- ИПК 4.1 Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации
- ИПК 4.2 Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров
- ИПК 4.3 Применяет стандартные прикладные программные средства при проведении модельных экспериментов

2. Задачи освоения дисциплины

- изучить архитектуру современных систем сбора, хранения, обработки информации и управления процессами
- изучить аппаратные и программные компонентами микропроцессорных систем

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Профессиональный цикл. Вариативная часть, формируемая участниками образовательных отношений», является обязательной для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Десятый семестр, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Б1.У.О.03 «Физика», Б1.У.О.10 «Программирование», Б1.О.О.01 «Радиоэлектроника».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- лекции 16 ч.

в том числе практическая подготовка: 36 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Архитектура микроконтроллера.

Тема 1. Магистрально модульная организация цифровых систем.

Tema 2. Виды архитектур (классическая гарвардская и принстонская архитектуры). RISC и CISC системы.

- **Тема 3.** Базовая архитектура микроконтроллера. Базовые элементы микроконтроллера. Система питания. Система синхронизации. Процессорное устройство. Память. Контроллер прерываний.
 - *Раздел 2.* Характеристики интегральной микросхемы микроконтроллера.
 - Тема 1. Типы корпусов интегральных микросхем.
 - Тема 2. Цоколь микросхемы и описание выводов.
 - Тема 3. Характеристики ядра процессора.
 - *Раздел 3.* Структура памяти микроконтроллера.
 - Тема 1. Адресное пространство микроконтроллера.
 - **Тема 2.** Структура памяти программ Flash-EEPROM. Регистр счетчик команд.
 - Тема 3. Регистры общего назначения (регистровый файл).
- **Tema 4.** Внутренняя и внешняя память SRAM. Регистры специальных функций и внешних устройств. Программный и аппаратный стек.
 - **Тема 5.** Память ЕЕРКОМ.
- **Раздел 4.** Питание и синхронизация микроконтроллера. Модуль синхронизации работы микроконтроллера. Тактовый генератор. Внешняя синхронизация и стабилизация тактового генератора. Управление частотой. Модуль питания. Режимы энергопотребления. Управление схемой сброса.
 - Раздел 5. Система команд микроконтроллера.
 - Тема 1. Команды пересылки данных.
 - Тема 2. Арифметические, логические команды и команды сдвига.
 - Тема 3. Команды передачи управления.
 - Тема 4. Команды операций с битами.
 - Тема 5. Язык Ассемблера.
 - Тема 6. Языки высокого уровня для программирования микроконтроллера.
- *Раздел 6.* Средства разработки программного обеспечения и тестирования микроконтроллера.
- **Tema 1.** Интегрированная отладочная среда разработки приложений «AVR Studio» для микроконтроллеров фирмы «Atmel».
 - Тема 2. Организация и создание проекта. Определения типа микроконтроллера.
- **Тема 3.** Редактор исходного текста программ. Транслятор языка ассемблера Окно сообщений ассемблера.
 - Тема 4. Отладчик. Отладка проекта при помощи программного симулятора
 - Тема 5. Окно состояния регистрового файла.
 - Тема 6. Окно состояния устройств ввода/вывода.
 - Тема 7. Окно состояния портов.
 - Тема 8. Окно просмотра переменных
 - Тема 9. Окно состояния процессорного ядра.
 - Тема 10. Окно просмотра содержимого памяти.
 - Тема 11. Управление программатором.
 - Раздел 7. Порты и периферийные устройства микроконтроллера
- **Тема 1.** Порты ввода-вывода. Логическая и схемная организация портов. Регистры портов. Программирование портов.
 - Тема 2. Обобщенная модель периферийного (внешнего) устройства.
- **Тема 3.** Таймеры микроконтроллера. Таймер-счетчик. Выбор источника тактовых сигналов. Режимы таймера. Программирование таймера.
- **Тема 4.** Аналоговый компаратор. Функционирование компаратора. Программирование компаратора.
- **Тема 5.** Модуль аналого-цифрового преобразования. Структура модуля. Функционирование модуля. Программирование модуля.
- **Тема 6.** Последовательные периферийные интерфейсы передачи данных. Модули USART, SPI, TWI. Программирование модулей.

Раздел 8. Прерывания.

Тема 1. Таблица векторов прерывания.

Тема 2. Обработка прерываний. Программирование модулей.

Темы для самостоятельной работы включают:

- 1. Архитектура 32 битных ARM микроконтроллеров;
- 2. Средства разработки программ для 32 битных ARM микроконтроллеров;

Темы практических занятий:

- 1. Программирование портов.
- 2. Программирование таймера.
- 3. Программирование компаратора.
- 4. Программирование АЦП и программная реализация ЦАП.
- 5. Программирование модулей передачи данных.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем проверки посещаемости, проверки выполнения лабораторных работ, проверки тестов по лекционному материалу. Результаты фиксируются контрольной точки не менее одного раза в семестр.

Примерные тесты для проведения аттестации по дисциплине.

Вопрос	Варианты ответа		
Главная особенность RISC	а) отсутствие механизма прерываний		
архитектуры?	б) использование ТТЛ логики		
	в) одна команда за один такт		
	г) высокоскоростная магистраль данных		
	д) отсутствие конвейера команд		
Для чего предназначен	а) для формирования сигналов синхронизации		
таймер?	б) для отслеживания интервала времени		
	в) для определения текущего времени		
	г) для таймирования обращений к сети Интернет		
Для чего служит команда	а) для возврата из подпрограммы		
RETI?	б) для выбора текущей инструкции		
	в) для возврата из прерывания		
	г) для режима регистрового обмена		
АЦП преобразует:	а) напряжение в ток		
	б) ток в аналог		
	в) напряжение в число		
	г) число в цифру		
	д) byte в shortint		
Какую функцию	а) синхронизации тактовой частоты процессора		
выполняет UART?	б) хранения информации		
	в) приема и передачи информации		
	г) преобразования цифры в напряжение		
	д) дешифратора		
Какое логическое	а) мультиплексор		
устройство выполняет	б) дешифратор		
выбор адреса элемента	в) триггер		
памяти?	г) мультивибратор		
	д) сканер		
Что понимают под	а) задание режима работы порта		
термином	б) задание направления вывода информации		
«конфигурирование	в) задание выходного сопротивления порта		
порта» ввода-вывода?	<u>г) задание направления работы порта на ввод-вывод</u>		

	информации		
Для чего служит	а) для передачи данных		
магистраль управления?	б) для передачи адресов		
1 7 1	в) для доставки менеджеров;		
	г) для синхронизации устройств компьютера		
За что отвечает регистр	а) за хранение результата работы АЛУ		
команд процессора?	б) за выполнение режима прерываний		
nemany np exeception	в) за хранение текущей элементарной операции		
	г) за проверку бита готовности ВУ		
	д) за состояние процессора		
Моделью периферийного	а) регистр состояния		
устройства является:	б) ряд регистров данных и регистров состояния		
y or position size sizes.	в) регистр данных		
	г) бит готовности		
	д) его физический образ		
Каков главный недостаток	а) отсутствие механизма прерываний		
CISC архитектуры?	б) использование КМОП логики		
Сібе архитектуры:	в) сложно определить время выполнения программы		
	г) медленная магистраль данных		
	д) отсутствие конвейера команд		
Какую функцию	а) синхронизации тактовой частоты процессора		
выполняет SPI?	б) хранения информации		
выполняет этт:	в) приема и передачи информации		
	г) преобразования цифры в напряжение		
	д) дешифратора		
Команда LDI	· · · · · · · · · · · · · · · · · · ·		
	а) ввода данных с клавиатуры		
предназначена для:	б) логического деления в) загрузки данных в регистр		
	г) преобразования цифры в напряжение		
	/ 1 1 1		
Varay union naman anam	д) сдвига влево содержимого регистра		
Какой прием используют	а) задержки сигнала на заданное время		
для преобразования	б) вычисления среднего значения сигнала за период		
цифрового сигнала в	в) модуляцию импульсов по ширине		
аналоговый?	г) проверку бита готовности АЦП		
п	д) фильтрование сигнала		
Для чего предназначены	а) для выполнения операций деления в модуле		
предделители в модулях	б) для передачи информации в модуль		
микроконтроллера?	в) для получения тактовой частоты работы модуля		
D	г) для синхронизации модулей процессора		
В чем недостатки	а) в отсутствии связи с внешним миром		
программного режима	б) в постоянной проверке устройств на готовность		
работы	в) в сложность определения времени выполнения коман		
микроконтроллера?	г) в медленной работе магистрали данных		
	д) в отсутствии конвейера команд		
Где хранят векторы	а) в регистрах ВУ		
прерываний?	б) в начале памяти		
	в) в стеке		
	г) в теле подпрограммы		
	д) в ассоциативной памяти		
Команда IN	а) чтения данных из регистров внешних устройств		
предназначена для:	б) логического отрицания значения в регистре		
	в) загрузки данных в регистр		

	г) преобразования цифры в напряжение			
	д) сдвига вправо содержимого регистра			
В чем достоинство систем	а) в высокой производительности процессора			
работающих в режиме	б) не надо программной проверки готовности устройств			
прерывания?				
прерывания:	г) в высокой частоте тактового генератора			
M TW/I	д) в раздельном хранении данных и программ			
Модуль TWI	а) синхронизации тактовой частоты процессора			
предназначен для:	б) хранения информации			
	в) приема и передачи информации			
	г) преобразования цифры в напряжение			
	д) дешифрации данных			
Какую функцию	а) хранит результаты работы АЛУ			
выполняет стек?	б) хранит вектора прерываний			
	в) хранит характеристики микроконтроллера			
	г) хранит адреса возврата из прерываний			
	д) сдвигает вправо содержимого регистра команд			
Что нужно сделать, чтобы	а) установить режим генерации тока			
порт стал источником	б) сконфигурировать на вход и подтянуть к 1			
тока?	в) подключить источник тока			
	г) синхронизовать порт			
Что такое вектор	а) многомерный вектор в пространстве прерываний			
прерываний?	б) указатель на адрес расположения обработчика			
	в) совокупность битов отвечающих за прерывания			
	г) указатель на причину прерывания			
	д) указатель на направление работы цикла			
Команда OUT	а) чтения данных из регистров внешних устройств			
предназначена для:	б) логического отрицания значения в регистре			
продинения топи долго	в) загрузки данных в регистр			
	г) вывода данных в регистры внешних устройств			
	д) сдвига вправо содержимого регистра			
Принцип	a) FIFO или LIFO			
функционирования стека:	б) возврат данных по ассоциативному приказу			
функционирования стека.	в) адресный			
	г) конвейерный			
	_ / _ 1			
D	д) квантово-механический			
В чем главная	а) команды имеют одинаковую длину			
особенность	б) время выполнения команды не зависит от её типа			
Принстонской	в) данные и команды хранятся в одном месте			
архитектуры?	г) присутствие конвейера			
7	д) серверный механизм передачи данных			
В чем главная	а) команды имеют один операнд			
особенность Гарвардской	б) время выполнения команды не зависит от её типа			
архитектуры?	в) память данных и команд разделены между собой			
	г) отсутствие конвейера			
	д) протокольный механизм передачи данных			

10. Порядок проведения и критерии оценивания промежуточной аттестации Зачет в четвертом семестре проводится в форме тестирования. Промежуточные тесты по лекциям и итоговый тест находятся в системе Mudl. К результатам тестирования добавляются результаты проведения лабораторных работ.

Критерии оценивания при проведении зачета:

ОПК-9

ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ

Компетенция Индикатор компетенции		Критерии оценивания результатов обучения	
		Не зачтено	Зачтено
ОПК-9. Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.	ИОПК -9.1. Применяет современные инструментальные системы программирования и компьютерного моделирования при решении прикладных задач.	Не знает современные инструментальны е системы программировани я и компьютерного моделирования при решении прикладных задач.	Применяет современные инструментальные системы программирования и компьютерного моделирования при решении прикладных задач
ПК-4. Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.	ИПК -4.1. Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации. ИПК -4.2. Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров. ИПК -4.3. Применяет стандартные прикладные программные средства при проведении модельных экспериментов.	Не владеет прикладными методами моделирования процессов в радио- электронных системах передачи ин- формации. Не владеет приемами компьютерного моделирования радиоэлектронны х систем и комплексов передачи информации с целью предсказания и улучшения их параметров. Не знает стандартные прикладные программные средства при	Владеет прикладными методами моделирования процессов в радиоэлектронных системах передачи информации. Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров. Применяет стандартные прикладные программные средства при проведении модельных экспериментов.

	проведении	
	модельных	
	экспериментов.	

Промежуточные тесты по лекциям и итоговый тест находятся в системе «Moodle». К результатам тестирования добавляются результаты проведения лабораторных работ, которые построены по принципу зачтено/не зачтено. Студент, не аттестованный по лаборатории, не допускается к сдаче итогового теста.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине в пункте 10.
- в) Методические указания по проведению лабораторных работ в электронном университете «Moodle».
- д) Методические указания по организации самостоятельной работы студентов в электронном университете «Moodle».

В образовательном процессе используется технология развивающего обучения с привлечением исследовательских методов, которая дает возможность учащимся самостоятельно пополнять свои знания, глубоко вникать в изучаемую проблему и предполагать пути ее решения. Используется технология проблемного обучения с созданием в учебной деятельности проблемных ситуаций и организации активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности. В процессе обучения используется тестирование студентов по темам с использованием ресурсов MOODLE. Общая логика хода освоения дисциплины заключается в: ознакомлении со структурой курса, используя рабочую программу и электронный учебный курс (ЭУК); ознакомлении с методическими рекомендациями по использованию электронного учебного курса; использовании записи лекции и материалов ЭУК накануне следующей лекции вспомнить материал предыдущей; использовании презентации соответствующего раздела ЭУК накануне следующей лекции ознакомиться с ее примерным содержанием; изучении теоретического материала по учебнику и конспекту; регулярной подготовке к практическим и лабораторным занятиям путем решения домашнего задания.

Самостоятельная работа включает в себя: изучение рекомендуемой учебной литературы; рассмотрение примеров решений типовых задач и вариантов ответов; решения задач из сборника задач; рассмотрение информационных ресурсов по изучаемой теме в сети Интернет.

12. Перечень учебной литературы и ресурсов сети Интернет а) основная литература:

- 1. Васильев А. Е. Встраиваемые системы автоматики и вычислительной техники. Микроконтроллеры / А. Е. Васильев. Москва : Горячая линия Телеком, 2018. 590 с.
- 2. Матюшин А. О. Программирование микроконтроллеров: стратегия и тактика / А. О. Матюшин. Москва : ДМК Пресс, 2017. 355 с.: ил., табл.
- 3. Девид М. Харрис, Сара Л. Харрис. Цифровая схемотехника и архитектура компьютера. М: ДМК Пресс, 2018. 792 с.
- 4. Микроконтроллеры AVR семейства Mega. Руководство пользователя / Евстифеев A. В.. Москва : ДМК Пресс. 592 с.. URL: http://e.lanbook.com/books/element.php?pl1_id=60968. URL:

- https://e.lanbook.com/img/cover/book/60968.jpg
- 5. Микроконтроллеры ARM7 семейств LPC2300/2400. Вводный курс разработчика / Тревор М.. Москва : ДМК Пресс. 336 с.. URL: http://e.lanbook.com/books/element.php?pl1_id=61018. URL: https://e.lanbook.com/img/cover/book/61018.jpg
- 6. Микроконтроллеры PIC 24: архитектура и программирование / Магда Ю. С.. Москва : ДМК Пресс. 240 с.. URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=917. URL: https://e.lanbook.com/img/cover/book/917.jpg
- 7. Микроконтроллеры AVR. Вводный курс / Мортон Д.. Москва : ДМК Пресс. 271 с.. URL: http://e.lanbook.com/books/element.php?pl1_id=60971. URL: https://e.lanbook.com/img/cover/book/60971.jpg
- 8. Микроконтроллеры семейства SX фирмы "Scenix" / Андре Ф.. Москва : ДМК Пресс. 267 с.. URL: http://e.lanbook.com/books/element.php?pl1_id=60953. URL: https://e.lanbook.com/img/cover/book/60953.jpg
- 9. 32/16 битные микроконтроллеры ARM7 семейства AT91SAM7 фирмы Atmel. Руководство пользователя / Редькин П. П.. Москва : ДМК Пресс. 700 с.. URL: http://e.lanbook.com/books/element.php?pl1_id=61031. URL: https://e.lanbook.com/img/cover/book/61031.jpg
- 10. Программирование микроконтроллеров с ядром СОRTEX-МЗ в задачах диагностики и контроля : [учебное пособие для студентов, обучающихся по направлениям 11.04.04 "Электроника и наноэлектроника", 12.04.04 "Биотехнические системы и технологии"] / С. Н. Торгаев, И. С. Мусоров, А. А. Солдатов, П. В. Сорокин ; Нац. исслед. Томский политехн. ун-т, [Институт неразрушающего контроля], Нац. исслед. Томский гос. ун-т, Ин-т оптики атмосферы им. В. Е. Зуева Сиб. отд-ния Рос. акад.. Томск : STT, 2017. 100, [1] с.
- 11. Смирнов Ю.А., Соколов С.В., Титов Е.В. Основы микроэлектроники и микропроцессорной техники. М.: Лань, 2013. 496 с.
- 12. В. Я. Хартов. Микроконтроллеры AVR. Практикум для начинающих, 2-е издание. М.: МГТУ, 2012. 296 с.
- **13.** Прокопенко В.С. Программирование микроконтроллеров ATMEL на языке С. М.: Издательский дом «Додэка-XX1», 2012. –296 с.
- **14.** Пухальский Г.И., Новосельцева Т.Я. Проектирование цифровых устройств. М.: Лань, 2012. 896 **с.**
- 15. Амелина М.А. Программа схемотехнического моделирования Місго-Сар. Версии 9, 10 / М.А. Амелина, С.А. Амелин. СПб: Лань, 2014. 632с. (Электронно-библиотечная система Лань, чтение доступно с IP-адресов ТГУ http://e.lanbook.com/books/element.php?pl1_id=53665)
 - б) дополнительная литература:
- 1. Тревор Мартин. Микроконтроллеры ARM7 семейства LPC2300/2400. Вводный курс разработчика. М.: Издательский дом «Додэка-XX1», 2010. 336 с.
- 2. Магда Ю.С. Микроконтроллеры РІС: архитектура и программирование. М.: ДМК Пресс, 2009. 240 с.
- 3. С. М. Рюмик. 1000 и одна микроконтроллерная схема. Выпуск 1.-M.: Издательский дом «Додэка-XX1», 2010.-356 с.
- 4. Баранов В. Н. Применение микроконтроллеров AVR: схемы, алгоритмы, программы М.: Издательский дом «Додэка-XX1», 2006. 287с.
- 5. Котюк А. Ф. Датчики в современных измерениях. М.: Радио и связь, 2006. 95с.
- 6. Джексон Р. Г. Новейшие датчики. М.: Техносфера, 2007. 380с.
- 7. http://atmel.com, http://pic.rkniga.ru.
- 8. М. Предко. Руководство по микроконтроллерам. Том І. М.: Постмаркет, 2001. 488c.

- 9. Евстифеев А. В. Микроконтроллеры AVR семейств Tiny и Mega фирмы ATMEL. М.: Издательский дом «Додэка-XX1», 2008. 560с.
- 10. Баранов В.В. Применение микроконтроллеров AVR: схемы, алгоритмы, программы, 3-е изд., перераб. М.: Издательский дом «Додэка-XX1», 2006. 288с.
- **11.** Полупроводниковые сенсоры в физико-химических исследованиях. М.: Наука 1991. –326с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.). Система Multisim. URL: http://pascalabc.net/downloads/pabcnethelp/index.htm.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории оборудованы системой Multisim. – URL: http://pascalabc.net/downloads/pabcnethelp/index.htm

15. Информация о разработчиках

Мещеряков Владимир Алексеевич, кандидат физико-математических наук, доцент кафедры радиоэлектроники, доцент.