Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДАЮ: Декан _А. Г. Коротаев

« 20 » 08_2023 г.

Рабочая программа дисциплины

Математический анализ

по направлению подготовки

12.03.02 Оптотехника

Направленность (профиль) подготовки : Оптико-электронные приборы и системы

> Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2023**

Код дисциплины в учебном плане: Б1.О.02

СОГЛАСОВАНО:

Председатель УМК А.П. Коханенко

Томск – 2023

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИУК 1.1 Осуществляет поиск информации, необходимой для решения задачи
- ИУК 1.2 Проводит критический анализ различных источников информации (эмпирической, теоретической).
- ИУК 1.3 Выявляет соотношение части и целого, их взаимосвязь, а также взаимоподчиненность элементов системы в ходе решения поставленной задачи
- ИУК 1.4 Синтезирует новое содержание и рефлексивно интерпретирует результаты анализа
- ИОПК 1.1 Умеет применять знания математики в профессиональной деятельности при моделировании и проектировании

2. Задачи освоения дисциплины

- сформировать навыки использования теоретических основ базовых разделов математического анализа при решении математических и прикладных задач.
- сформировать навыки использования практических методов математического анализа для решения задач профессиональной деятельности.
- определять необходимость привлечения дополнительных знаний из специальных разделов математического анализа для решения задач при осуществлении профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен Второй семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения, содержащиеся в программе общего среднего образования по предметам: алгебра, начала анализа, геометрия, физика.

Пререквизиты дисциплины отсутствуют.

Постреквизиты дисциплины: «Дифференциальные уравнения», «Методы математической физики», «Векторный и тензорный анализ», «Теория вероятностей и математическая статистика».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 12 з.е., 432 часа, из которых:

- -лекции: 98 ч.
- -практические занятия: 128 ч.

.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Элементы теории множеств.

Элементы теории множеств: логические символы, операции над множествами, булева алгебра, принцип двойственности. Метод математической индукции.

Тема 2. Вещественные числа и числовые множества.

Вещественные числа. Множество вещественных чисел. Аксиомы поля вещественных чисел. Расширенное множество вещественных чисел. Окрестность точки. Границы числовых множеств. Множества точек на плоскости и в пространстве.

Тема 3. Функция. Отображения.

Понятие функции. Образ и прообраз множества при заданном отображении. Суперпозиция отображений. Обратное, параметрическое и неявное отображения. Некоторые классы отображений: инъекция, сюръекция, биекция. Понятие графика функции. Основные элементарные функции. Полином, рациональная функция, иррациональная функция, трансцендентная функция. Построение графиков функций.

Тема 4. Векторные и метрические пространства.

Нормированные векторные пространства. Евклидово пространство. Метрическое пространство. Окрестности. Сочетания. Бином Ньютона. Треугольник Паскаля.

Тема 5. Предел последовательности.

Понятие последовательности. Сходящиеся последовательности и их свойства. Теорема о единственности предела. Геометрический смысл предела последовательности. Признаки существования предела. Предельный переход в неравенствах. Бесконечно большие и бесконечно малые последовательности. Теоремы о пределе монотонной последовательности. Вычисление пределов последовательностей. Первый и второй замечательные пределы (случай дискретного аргумента).

Тема 6. Предел функции.

Определение предела функции вещественного аргумента по Гейне и по Коши. Геометрический смысл предела функции. Односторонние пределы. Критерий существования предела функций через односторонние пределы. Свойства предела функций. Бесконечно большие и бесконечно малые функции. Предел композиции функции. Теоремы о пределе функций. Первый и второй замечательные пределы (случай непрерывного аргумента). Основные методы вычисления пределов.

Тема 7. Непрерывность функции.

Определение непрерывности функции. Свойства функций, непрерывных в точке. Непрерывность элементарных функций. Односторонняя непрерывность. Точки разрыва функции и их классификация. Функции, непрерывные на отрезке. Теорема Вейерштрасса. Теорема о промежуточном значении. Исследование функции на непрерывность. Сравнение бесконечно малых. Свойства бесконечно малых. Эквивалентные бесконечно малые. Вычисление пределов с использованием эквивалентных бесконечно малых.

Тема 8. Дифференциальное исчисление функции одной переменной.

геометрический Понятие производной. Ee И физический смысл. Дифференцируемость и непрерывность. Основные правила дифференцирования. Производные элементарных функций. Производная сложной функции. Производная обратной функции. Производная степенно-показательной функции. Производная неявной функции, логарифмическая производная. Производная функции, заданной параметрически. Производные высших порядков. Формула Лейбница. Дифференциал. Правила вычисления дифференциала. Инвариантность дифференциала. Дифференциалы первого высших Приближенные вычисления с помощью дифференциала. Основные теоремы дифференциального исчисления: теоремы Ферма, Ролля, Лагранжа, Коши. Правило Лопиталя. Формула Тейлора. Пять основных разложений. Исследование функций и построение графиков. Возрастание, убывание функции. Экстремум функции. Выпуклость, вогнутость, точки перегиба. Асимптоты. Наибольшее и наименьшее значение функции на отрезке. Построение графиков функций по характерным точкам. Задачи на приложения производной к геометрии и механике. Практические задачи на экстремум.

Тема 9. Неопределенный интеграл.

Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Таблица неопределенных интегралов. Методы интегрирования: непосредственное интегрирование, замена переменной и интегрирование по частям. Интегрирование рациональных дробей: интегрирование простейших дробей. Интегрирование рациональных дробей с помощью разложения на простейшие дроби. Интегрирование иррациональных и трансцендентных функций. Интегралы от дифференциальных биномов. Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка.

Тема 10. Определенный интеграл и его приложения.

Определение и условия существования определенного интеграла. Классы интегрируемых функций. Свойства определенного интеграла. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница. Формула замены переменной в определенном интеграле. Интегрирование по частям. Вычисление площадей плоских фигур. Вычисление длины дуги кривой. Вычисление объемов тел. Вычисление площади поверхности тела вращения. Некоторые приложения определенного интеграла к решению физических задач.

Тема 11. Функции нескольких переменных.

Понятие функции нескольких переменных. Функции двух переменных и области их определения. Функции m переменных. Предел и непрерывность функции нескольких переменных. Частные производные. Полное приращение функции. Производные сложных функций. Полный дифференциал. Инвариантность формы первого дифференциала. Производная по направлению. Градиент. Производные и дифференциалы высших порядков. Теоремы о смешанных производных. Дифференцирование сложных и неявных функций. Касательная плоскость и нормаль к поверхности. Экстремумы функции нескольких переменных. Локальный экстремум. Условный экстремум.

Тема 12. Ряды.

Понятие числового ряда. Основные определения и свойства. Необходимый признак сходимости. Ряды с положительными членами. Признаки сравнения. Достаточные признаки сходимости. Знакопеременные ряды. Свойства сходящихся рядов. Абсолютная и условная сходимости. Функциональные ряды. Равномерная и неравномерная сходимость. Условия равномерной сходимости. Функциональные свойства суммы ряда. Почленное интегрирование и дифференцирование рядов. Степенные ряды. Теорема Абеля. Область и радиус сходимости степенного ряда.

Непрерывность суммы степенного ряда. Свойства степенных рядов. Разложение элементарных функций в степенные ряды. Ряд Тейлора.

Тема 13. Несобственные интегралы.

Несобственные интегралы с бесконечными пределами интегрирования. Несобственные интегралы от неограниченных функций. Признаки сходимости несобственных интегралов.

Тема 14. Интегрирование.

Полярная система координат. Двойной интеграл. Случай прямоугольной области. Случай криволинейной области. Замена переменных в двойном интеграле. Криволинейные интегралы. Формула Грина.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному и практическому материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Организация самостоятельной работы студентов подразумевает:

- 1. изучение дополнительного теоретического материала по темам: элементы теории множеств, вещественные числа и числовые множества, функции, метрические пространства, предел последовательности, предел и непрерывность функции, производная, неопределенный и определенный интеграл, функции нескольких переменных, ряды, двойные и криволинейные интегралы.
- 2. подготовку к практическим занятиям, а именно, выполнение домашней работы по решению задач;
- 3. подготовку к текущему контролю;
- 4. написание двух контрольных работ в середине и в конце каждого семестра;
- 5. выполнение индивидуальных домашних заданий по всем темам учебной дисциплины;
- 6. работу в адаптивной системе обучения Plario;
- 7. подготовку к экзамену.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом и втором семестрах проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Первая часть представляет собой два теоретических вопроса, проверяющих ИУК- $1.1,\ 1.3-1$ вопрос, ИУК-1.4-2 вопрос. Ответы на вопросы первой части даются путем анализа теоретического материала.

Вторая часть содержит две задачи, проверяющий ОПК -1 (задача 1 - ИОПК -1.1). Ответ на вопрос второй части дается в развернутой форме в виде подробного решения каждой задачи.

Примерный перечень теоретических вопросов.

1 семестр

- 1. Метод математической индукции (теорема).
- 2. Множества. Действия над множествами.
- 3. Числовые множества. Множество вещественных чисел, расширенное множество ℝ.
- 4. Связные, дискретные, замкнутые, открытые множества.
- 5. Границы числовых множеств.

- 6. Функции. Область определения, область значений. График функции. Примеры.
- 7. Свойства функций: четность, монотонность, ограниченность, периодичность. Композиция функций.
- 8. Обратное отображение. Критерий обратимости отображения.
- 9. Явно, неявно, параметрически заданные функции. Примеры.
- 10. Последовательность, предел числовой последовательности, его геометрический смысл.
- 11. Свойства сходящихся последовательностей. Лемма «о двух милиционерах» (с доказательством).
- 12. Признаки существования предела. Предельный переход в неравенствах.
- 13. Бесконечно большие и бесконечно малые последовательности, их свойства.
- 14. Теоремы о пределе монотонной последовательности.
- 15. Определение предела функции в точке (по Гейне и по Коши). Геометрический смысл предела функции.
- 16. Предел функции в бесконечности.
- 17. Односторонние пределы. Критерий существования предела функций через односторонние пределы. Свойства предела функций.
- 18. Бесконечно большие и бесконечно малые функции.
- 19. Связь между функцией, ее пределом и бесконечно малой функцией.
- 20. Предел композиции функции. Теоремы о пределе функций.
- 21. Первый и второй замечательные пределы (случай непрерывного аргумента) (с доказательством).
- 22. Определение непрерывности функции. Свойства функций, непрерывных в точке. Непрерывность элементарных функций.
- 23. Функции, непрерывные на отрезке. Теорема Вейерштрасса. Теорема о промежуточном значении.
- 24. Эквивалентные бесконечно малые. Примеры.
- 25. Определение производной. Геометрический и физический смысл.
- 26. Правила дифференцирования. Таблица производных основных элементарных функций.
- 27. Определение дифференциала. Его геометрический смысл и свойства.
- 28. Производная обратной функции (теорема). Производная сложной функции (теорема).
- 29. Логарифмическая производная. Производная неявной функции.
- 30. Производная параметрически заданной функции.
- 31. Производные и дифференциалы высших порядков.
- 32. Основные теоремы дифференциального исчисления: теоремы Ферма, Ролля, Лагранжа, Коши.
- 33. Правило Лопиталя. Формула Тейлора.
- 34. Возрастание, убывание функции. Экстремум функции. Выпуклость, вогнутость, точки перегиба.
- 35. Асимптоты. Наибольшее и наименьшее значение функции на отрезке.

2 семестр

- 1. Определение первообразной функции. Примеры.
- 2. Понятие неопределенного интеграла. Какие функции имеют первообразную.

- 3. Свойства неопределенного интеграла. Таблица интегралов.
- 4. Непосредственное интегрирование. Примеры.
- 5. Замена переменной в неопределенном интеграле.
- 6. Линейная замена, внесение под знак дифференциала. Примеры.
- 7. Выделение полного квадрата в подынтегральном выражении.
- 8. Формула интегрирования по частям. К каким типам интегралов она применяется.
- 9. Типы простых дробей и их интегрирование.
- 10. Разложение рациональной дроби на простые. Примеры.
- 11. Метод неопределенных коэффициентов.
- 12. Интегрирование простейших иррациональных функций. Примеры.
- 13. Интегрирование тригонометрических функций. Примеры.
- 14. Понятие определенного интеграла.
- 15. Свойства и оценки определенного интеграла.
- 16. Теоремы об определенном интеграле: теорема о среднем, достаточное условие интегрируемости.
- 17. Формула Ньютона-Лейбница (с доказательством).
- 18. Замена переменной в определенном интеграле. Примеры.
- 19. Интегрирование по частям в определенном интеграле. Выбор функций и и v.
- 20. Вычисление площади плоской фигуры в декартовых координатах.
- 21. Вычисление площади плоской фигуры, заданной параметрически.
- 22. Вычисление площади криволинейного сектора в полярных координатах.
- 23. Вычисление длины дуги кривой в декартовых координатах, в параметрической форме, в полярных координатах.
- 24. Вычисление объема тела, объема тела вращения.
- 25. Вычисление площади поверхности вращения.
- 26. Определение несобственного интеграла первого и второго рода.
- 27. Числовые ряды. Сумма ряда. Необходимое условие сходимости ряда (с доказательством).
- 28. Гармонический ряд. Обобщенный гармонический ряд. Геометрический ряд. Их сходимость. (с доказательством)
- 29. Признаки сравнения для знакоположительных рядов. Признак Даламбера, признак Коши.
- 30. Знакочередующиеся ряды. Абсолютно и условно сходящиеся ряды. Признак Лейбница.
- 31. Степенной ряд. Радиус и интервал сходимости. Формулы вычисления.
- 32. Ряд Тейлора. Разложение элементарных функций в ряд Маклорена.
- 33. Функции нескольких переменных, область определения и область значений. График функции нескольких переменных. Линии уровня.
- 34. Частные производные различных порядков. Теорема о смешанных производных второго порядка.
- 35. Полный дифференциал ФНП.
- 36. Производные сложной функции (ФНП).
- 37. Градиент, производная по направлению, касательная плоскость, нормаль к поверхности.
- 38. Экстремум функции двух переменных. Необходимые и достаточные условия. Метод нахождения. Наибольшее и наименьшее значения функции. Двойной интеграл, способы вычисления. Физический и геометрический смыслы.

Примеры задач.

1	Вычислить предел последовательности: $\lim_{n\to\infty}\frac{(4-n)^3-(2-n)^3}{(1-n)^2-(2+n)^4}$. Вычислить предел последовательности: $\lim_{n\to\infty}\frac{\sqrt{n-1}-\sqrt{2n^2+3}}{\sqrt[3]{n^3+3}+\sqrt[4]{n^5+2}}$.
2	Вычислить предел последовательности: $\lim_{n\to\infty}\frac{\sqrt{n-1}-\sqrt{2n^2+3}}{\sqrt[3]{n^3+3}+\sqrt[4]{n^5+2}}$.
3	Вычислить предел последовательности: $\lim_{n \to \infty} \left(\frac{n+2}{n-1} \right)^n$.
4	Вычислить предел функции: $\lim_{x\to -3} \frac{x^2 + 2x - 3}{x^3 + 5x^2 + 6x}$.
5	Вычислить предел функции: $\lim_{x\to 0} \frac{3x^2 + 6x}{\sin 3x}$.
6	Вычислить предел функции: $\lim_{x\to 0} \frac{1-\cos 6x}{x\sin 3x}$.
7	Вычислить предел функции: $\lim_{x\to 2} \frac{\sqrt{x+7}-3}{\sqrt{x+2}-2}$.
8	Вычислить предел функции: $\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$.
9	Вычислить предел функции: $\lim_{x\to\infty} \left(x\left(\sqrt{x^2+4}-x\right)\right)$.
10	Вычислить предел функции: $\lim_{x\to\infty} \left(\frac{x+2}{x}\right)^{3-2x}$.
11	Вычислить предел функции: $\lim_{x\to 0} \frac{arctg2x}{tg3x}$.
12	Исследовать функцию на непрерывность в точках: $f(x) = 5^{1/(x-3)} - 1; \ x_1 = 3, \ x_2 = 4.$
13	Исследовать функцию на непрерывность в точках: $f(x) = \begin{cases} x^3, & x < -1, \\ x - 1, & -1 \le x \le 3, \\ -x + 5, & x > 3. \end{cases}$
14	Найти производные функций: $y = (x^5 + 3x - 1)^4$, $y = \frac{\sin^2 x}{(x^3 + 1)}$, $y = e^{2x} tg 4x$.
15	Найти производные функций: $y = 2^{-\cos^4 5x}$, $y = \sin^2 x \cdot 2^{x^2}$, $y = arctg \sqrt{1 + x^2}$.
16	Найти производные функций: $y = \sin\left(x^5 - tg^2x\right), y = \sqrt{\frac{\cos^2 x + 1}{\sin 2x + 1}}, y = e^{-x^2}\cos 2x.$
17	Найти производные функций: $y = 2^{\sqrt{tgx}}$, $y = \ln\left(\arcsin\sqrt{x}\right)$, $y = \ln\sin 3 - \frac{\cos^2 x}{\sin x}$.
18	Найти производную функции: $y = (tgx)^{\ln x}$.
19	Найти производную функции: $y = (arctgx)^x$.
20	Найти производную функции: $\begin{cases} x = \ln\left(t^2 + 1\right), \\ y = \sqrt{t^2 + 1}. \end{cases}$

21	Найти производную функции: $\begin{cases} x = \cos^3 t \\ y = \sin^3 t. \end{cases}$
22	Найти вторую производную функции: $y = (1+4x^2)arctg 2x$.
23	Найти вторую производную функции: $y = (1+x^2)\ln(1+x^2)$.
24	Вычислить значение второй производной функции, заданной уравнением: $x^2 + 2y^2 - xy + x + y = 4$ в точке M(1,1).
25	Найти дифференциал функции: $y = \sqrt{arctgx} + (\arcsin x)^2$.
26	Найти дифференциал второго порядка функции: $y = e^{-x^3}$.
27	Найти дифференциалы первого и второго порядка функции: $y = (x^2 + 1) arctgx$.
28	Найти асимптоты кривой: $y = \frac{x^3}{2(x+1)^2}$.
29	Исследовать на экстремум функцию: $y = \sqrt[3]{(x^2 - 6x + 5)^2}$.
30	Найти точки перегиба, интервалы выпуклости и вогнутости графика функции: $y = \ln\left(1 + x^2\right)$.

No	Практические задачи к экзамену (2 семестр)
1	Найти неопределенный интеграл: $\int \frac{xdx}{\sqrt{7-3x^2}}$.
2	Найти неопределенный интеграл: $\int \frac{\ln^3(1-x)dx}{x-1}.$
3	Найти неопределенный интеграл: $\int \sin^4 2x \cos 2x dx$.
4	Найти неопределенный интеграл: $\int \frac{\cos 6x}{\sin^4 6x} dx.$
5	Найти неопределенный интеграл: $\int \frac{tg^4 7x}{\cos^2 7x} dx.$
6	Найти неопределенный интеграл: $\int e^{1-6x^2} x dx$.
7	Найти неопределенный интеграл: $\int \frac{3x+9}{x^2-6x+12} dx$.
8	Найти неопределенный интеграл: $\int x \cos\left(\frac{x}{2}+1\right) dx$.
9	Найти неопределенный интеграл: $\int \frac{dx}{x(x^2-1)}.$
10	Найти неопределенный интеграл: $\int \frac{x^2 + 2x + x}{(x-1)(x-2)(x-4)} dx.$
11	Вычислить определенный интеграл: $\int_{0}^{1} \frac{x}{(x^2+1)^2} dx$.

12	Вычислить определенный интеграл: $\int_{1}^{2} x \ln^{2} x dx$.			
13	Вычислить площадь фигуры, ограниченной линией: $y^2 = x + 5$, $y^2 = -x + 4$.			
14	Вычислить площадь фигуры, ограниченной линией: $4y = 8x - x^2$, $4y = x + 6$.			
15	Найти частные производные первого и второго порядка функции: $y = e^{xy}$.			
16	Найти частные производные первого и второго порядка функции: $y = x \ln \left(\frac{x}{y} \right)$.			
17	Найти градиент функции $u = x + \ln(z^2 + y^2)$ в точке $M(2,1,1)$.			
18	Найти градиент функции $u = x^3 + \sqrt{z^2 + y^2}$ в точке M(1,1,0).			
19	Найти уравнения касательной плоскости и нормали к поверхности:			
	$x^{2} + y^{2} + z^{2} - 16 = 0, M(2, 2, 2\sqrt{2}).$			
20	Найти экстремум функции $z = x^2 - xy + y^2$.			
21	Найти полный дифференциал функции $y = e^{x^3 - y^3}$.			
22	Исследовать ряд на сходимость $\sum_{n=1}^{\infty} \frac{n^2}{2n^3-1}$.			
23	Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^n}{(n+1) \cdot 2^n}$.			
24	Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 9^n}$.			
25	Разложить функцию в ряд Тейлора $y = \frac{3}{2 - x - x^2}$.			
26	Найти полный дифференциал функции $u = z \cdot arctg(x/y)$.			
27	Найти полный дифференциал второго порядка функции $z = x^3 + y^3 + x^2y^2$.			
28	Изменить порядок интегрирования $\int_{0}^{1} dx \int_{1}^{2^{x}} f(x, y) dy + \int_{1}^{2} dx \int_{1}^{2/x} f(x, y) dy.$			
29	Вычислить двойной интеграл по области D, ограниченной линиями: $\iint\limits_{D} (x^2 + y) dx dy, y = x^2, x = y^2.$			
30	Вычислить двойной интеграл по области D, ограниченной линиями: $\iint\limits_{D}(2x-y)dxdy, y=x^{2}, y=\sqrt{x} \ .$			

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

보ㅇ로ㅁㅇ : 얼ㅌㅌㅌㅌㅌㅌ Kpuтерии оценивания результатов обучения

		Неудовлетворительно	Удовлетворительно	Хорошо	оглично
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный	ИУК 1.1 Осуществляет поиск информации, необходимой для решения задачи.	Не осуществляет поиск информации, необходимой для решения задачи	Имеет общее представление о поиске информации, необходимой для решения задачи	Осуществляет поиск информации, необходимой для решения задачи, но допускает ошибки	Осуществляет и свободно владеет поиском информации, необходимой для решения задачи
подход для решения поставленных задач	ИУК 1.2 Проводит критический анализ различных источников информации (эмпирической, теоретической).	Не проводит критический анализ различных источников информации (эмпирической).	Частично проводит критический анализ различных источников информации (эмпирической).	В основном проводит критический анализ различных источников информации (эмпирической, теоретической), но делает ошибки	Умеет самостоятельно проводить критический анализ различных источников информации (эмпирической, теоретической), собирать данные по сложным научным проблемам, относящимся к профессиональной деятельности
	ИУК 1.3 Выявляет соотношение части и целого, их взаимосвязь, а также взаимоподчиненность элементов системы в ходе решения.	Не выявляет соотношение части и целого, их взаимосвязь, а также взаимоподчинен ность элементов системы в ходе решения.	Имеет общее представление о том, как выявлять соотношение части и целого, их взаимосвязь, а также взаимоподчинен ность элементов системы в ходе решения	В основном выявляет соотношение части и целого, их взаимосвязь, а также взаимоподчинен ность элементов системы в ходе решения, но допускает ошибки	Свободно владеет и выявляет соотношение части и целого, их взаимосвязь, а также взаимоподчиненно сть элементов системы в ходе решения.
	ИУК 1.4 Синтезирует новое содержание и рефлексивно интерпретирует результаты анализа.	Не синтезирует новое содержание и рефлексивно не интерпретирует результаты анализа	Владеет отдельными навыками синтеза и рефлексии	В основном владеет навыками синтеза нового содержания и интерпретирует результаты анализа, но допускает ошибки	Свободно владеет и умеет синтезировать новое содержание и рефлексивно интерпретировать результаты анализа.
ОПК-1 Способен применять естественнонауч ные и общеинженерны е знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием	ИОПК 1.1 Умеет применять знания математики в профессиональной деятельности при моделировании и проектировании	Имеет общие представления о возможности применения знаний в профессиональн ой деятельности при моделировании и проектировании.	Способен предложить примеры использования знаний в профессиональн ой деятельности при моделировании и проектировании.	Владеет навыками использования базовых знаний в профессиональн ой деятельности при моделировании и проектировании	Владеет навыками использования базовых знаний в профессиональной деятельности при моделировании и проектировании, самостоятельно их использует.

ние ями и

Текущий контроль осуществляется при помощи выполнения контрольных работ обучающимися.

Для выставления текущей успеваемости при контроле CPC рекомендуется использовать следующую таблицу.

Оценка результатов контроля СРС	Критерии соответствия
(отлично)	Решены все задачи. Студент четко и логично изложил решение задач.
(хорошо)	Студент решил все задачи, но не в полном объеме, т.е. при решении применяется верная методика, но имеют место ошибки при решении.
(удовлетворительно)	Студент решил половину задач в полном объеме, с несущественными недочетами.
(неудовлетворительно)	Студент решил менее половины задач с нарушением логики изложения. Студент очень плохо владеет основными методами решения. Допущены существенные ошибки.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=8958
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Планы практических занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления : учебник : в 3 томах / Г. М. Фихтенгольц. 13-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Том 1 2019. 608 с.
- 2. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления : учебник : в 3 томах / Г. М. Фихтенгольц. 13-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Том 2 2019. 800 с.
- 3. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления : учебник : в 3 томах / Г. М. Фихтенгольц. 10-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Том 3 2019. 656 с.
- 4. Кудрявцев, Л. Д. Курс математического анализа в 3 т. Том 2 в 2 книгах. Книга 1 : учебник для вузов / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 396 с.
- 5. Кудрявцев, Л. Д. Курс математического анализа в 3 т. Том 2 в 2 книгах. Книга 1 : учебник для вузов / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 396 с.

- 6. Кудрявцев, Л. Д. Курс математического анализа в 3 т. Том 2 в 2 книгах. Книга 2 : учебник для вузов / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 323 с.
- 7. Кудрявцев, Л. Д. Курс математического анализа в 3 т. Том 3 : учебник для вузов / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. Москва : Издательство Юрайт, 2021. 351 с.
- 8. Ильин, В. А. Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 1: учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2021. 324 с.
- 9. Ильин, В. А. Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 2 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2021. 315 с.
- 10. Демидович, Б. П. Сборник задач и упражнений по математическому анализу : учебное пособие / Б. П. Демидович. 22-е изд., стер. Санкт-Петербург : Лань, 2020. 624 с.
 - б) дополнительная литература:
- 1. Бермант, А. Ф. Краткий курс математического анализа : учебное пособие / А. Ф. Бермант, И. Г. Араманович. 16-е изд. Санкт-Петербург : Лань, 2021. 736 с.
- 2. Филимоненкова, Н. В. Множества и отображения. Интенсивное введение в математический анализ для студентов технических вузов : учебное пособие / Н. В. Филимоненкова, П. А. Бакусов. Санкт-Петербург : Лань, 2021. 180 с.
- 3. Запорожец, Г. И. Руководство к решению задач по математическому анализу : учебное пособие / Г. И. Запорожец. 8-е изд.,стер. Санкт-Петербург : Лань, 2021. 464 с. ISBN 978-5-8114-0912-9.
- 4. Берман, Г. Н. Сборник задач по курсу математического анализа: учебное пособие / Г. Н. Берман. 9-е изд., стер. Санкт-Петербург: Лань, 2020. 492 с.
- 5. Бермант, А. Ф. Краткий курс математического анализа : учебное пособие / А. Ф. Бермант, И. Г. Араманович. 16-е изд. Санкт-Петербург : Лань, 2021. 736 с.
- 6. Зорич В.А. Математический анализ (в двух частях). М.: Изд-во. МЦНМО, 2007. Ч.1. 657 с.; Ч.2. 789 с.
- 7. Лекции по математическому анализу: Учебник для университетов и педагогических вузов / Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков; Под ред. В.А. Садовничего. 2-е изд., перераб. М.: Высшая школа, 2000. 694 с.
- 8. Задачи и упражнения по математическому анализу (в двух частях) / И.А. Виноградова, С.Н. Олехник, В.А. Садовничий. 3-е изд., испр. М.: Дрофа, 2001. 4.1. 724 с.; 4.2. 710 с.
- 9. Индивидуальные задания по высшей математике : учебное пособие : в 4 частях / под общей редакцией А. П. Рябушко. 7-е изд. Минск : Вышэйшая школа, [б. г.]. Часть 1 : Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной 2013. 304 с.
- 10. Индивидуальные задания по высшей математике : учебное пособие : в 4 частях / под общей редакцией А. П. Рябушко. 6-е изд. Минск : Вышэйшая школа, [б. г.]. Часть 2 : Комплексные числа. Неопределенные и определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения 2014. 396 с.
- 11. Индивидуальные задания по высшей математике : учебное пособие : в 4 частях / под общей редакцией А. П. Рябушко. 6-е изд. Минск : Вышэйшая школа, [б. г.]. Часть 3 : Ряды. Кратные и криволинейные интегралы. Элементы теории поля 2013. 367 с.

- в) ресурсы сети Интернет:
- http://e-science.sources.ru/ портал естественных наук
- http://www.coursera.org/ сайт обучающих курсов ведущих вузов мира
- https://ocw.mit.edu/index.htm сайт открытых курсов МІТ

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ— http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
 Электронная библиотека (репозиторий) ТГУ—
- http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 3FC ZNANIUM.com https://znanium.com/
 - 96C IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешанном формате («Актру»).

15. Информация о разработчиках

Лобода Юлия Анатольевна, кандидат технических наук, доцент кафедры Общей математики Механико-математического факультета ТГУ.