Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Биофизика мембран

по направлению подготовки

06.04.01 Биология

Направленность (профиль) подготовки: **Фундаментальная и прикладная биология**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Симакова

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен использовать и применять фундаментальные биологические представления и современные методологические подходы для постановки и решения новых нестандартных задач в сфере профессиональной деятельности.

ПК-1 Способен обрабатывать и использовать научную и научно-техническую информацию при решении исследовательских задач в соответствии с профилем (направленностью) магистерской программы.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1 Демонстрирует понимание основных открытий, актуальных проблем, методических основ биологии и смежных наук

ИОПК-1.2 Анализирует современное состояние и тенденции развития биологических наук

ИПК-1.1 Применяет знания фундаментальных и прикладных разделов дисциплин (модулей), определяющих направленность (профиль) программы магистратуры при решении отдельных исследовательских задач

2. Задачи освоения дисциплины

- Освоить теоретические основы функционирования живых организмов с точки зрения биофизики, рассмотреть современные представления о физических и математических моделях и аппарате для описания живых организмов, изучить механизмы развития биологических эффектов на молекулярном уровне.
- Познакомиться с современными методами изучения и регуляции клеточных процессов, оценить их преимущества для решения практических задач профессиональной деятельности.
 - Сформировать объективный взгляд на современную биофизику.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Физиология человека и животных».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования по следующим дисциплинам: «Физика», «Химия», «Биохимия», «Биофизика», «Биоэнергетика». Дисциплина «Биофизика мембран» является логическим продолжением в цепи дисциплин по принципу «от простого к более сложному», и сама является основой для углубленного изучении специальных дисциплин

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 8 ч. -семинар: 18 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение (погружение) в предмет дисциплины (история изучения свойств и строения мембран)

Тема 2. Физико-химическая организация мембран. Молекулярная динамика мембранных компонентов

Тема 3. Кооперативные свойства биомембран. Фазовые переходы в биомембранах и их физиологическая роль. По Д.П. Харакозу

Тема 4. Цитоскелет живой клетки. Структура, свойства, функции цитоскелета

Тема 5. Трансмембранный перенос ионов в возбудимых мембранах. Методы изучения ионных токов

Тема 6. Ионные каналы биомембран. кластерная организация каналов. Системы первично активного транспорта.

Тема 7. Энергопреобразующие мембраны. Теория ЭКВ и её смысл применительно к работе дыхательных цепей. Туннельные эффекты.

Тема 8. Функционирование дыхательной цепи митохондрий. Нарушение работы дыхательной цепи. Векторные мембранные комплексы f0, f1 (H-АТФазы, АТФсинтетазы).

Тема 9. Окислительные процессы в биомембранах. АФК и ПОЛ

Тема 10. Трансмембранный перенос белков и ДНК. Электропорация биомембран

Тема 11. Основы молекулярного узнавания в мембранах. кинетика лигандрецепторного взаимодействия.

Тема 12. GPCR-рецепторы и опосредованыые ими сигнальные пути.

Тема 13. Сигнальные пути, поддерживаемые газотрансмиттерами.

Тема 14. Современные прикладные вопросы биофизики мембран

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех вопросов. Продолжительность экзамена 1,5 часа.

«Неудовлетворительно» - студент имеет слабое представление о биофизических процессах в живых организмах, допускает грубые ошибки в ответе и при использовании специальной терминологии; в течение учебного года занимался посредственно, на семинарских занятиях был пассивен, задания в курсе iDO выполнял с оценкой «2» или «3 балла».

«Удовлетворительно» - студент владеет лишь поверхностными о биофизических процессах в живых организмах, о биофизических методах изучения клеток, слабо владеет специальной терминологией; в течение учебного года занимался посредственно, на семинарских был недостаточно активен, задания в курсе iDO выполнял в основном с оценкой «3 балла».

«Хорошо» - студент владеет хорошими о биофизических процессах в живых организмах, о биофизических методах изучения клеток, при ответе на вопросы билета допускает незначительные ошибки; в течение учебного года студент полностью и успешно выполнил учебный план, активно работал на семинарских, задания в курсе iDO выполнял с оценкой «4 балла»;

«Отлично» - студент владеет отличными знаниями о биофизических процессах в живых организмах, о биофизических методах изучения клеток, владеет специальной терминологией, при ответе на вопросы билета и дополнительные вопросы не допускает ошибок, способен к анализу предложенных ситуаций; в течение учебного года студент полностью и успешно выполнил учебный план, активно работал на семинарских занятиях, за задания в курсе iDO получал в основном оценки «5 баллов».

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=25719
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
- в) План семинарских занятий по дисциплине дан в электронном курсе https://lms.tsu.ru/course/view.php?id=25719.
- д) Методические указания по организации самостоятельной работы студентов даны в электронном курсе https://lms.tsu.ru/course/view.php?id=25719..

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Большаков М.А., Жаркова Л.П. Мембранные процессы физиологический и биофизический аспекты. Учебное пособие. 2011.
- 2. Жаркова Л.П., Большаков М.А. Основы энергетики живых систем. Учебное пособие. Томск:ТГУ. 2013. 164с.
- 3. Молекулярная и клеточная физиология: избранные главы. Учебное пособие.» Жаркова Л.П., Большаков М.А., Керея А.В., 2018. Томск ТГУ; ТМЛ-Пресс 188 с.
 - б) дополнительная литература:
 - 1. Биофизика./ Ред. В.Ф. Антонов. М: Владос, 2000, 287 с.
- 2. Скулачев В.П. Явления запрограммированной смерти. Митохондрии, клетки и органы: роль активных форм кислорода. // Соросовский образовательный журнал. 2001. T.7. Ne6. C.4 10.
 - 3. Биофизика./ Ред. П.Г. Костюк. Киев: Выща школа, 1998, 503 с.
- 4. Варфоломеев С.Д., Гуревич К.Г. Биокинетика. Практический курс. Учебное пособие. Гл.3, с. 335. М: ФАИР-ПРЕСС, 1999,-720с.
- 5. Костюк П.Г., Крышталь О.А. Механизмы возбудимости нервной клетки. М: Наука, 1981, 204 с.
 - 6. Костюк П.Г. Кальций и клеточная возбудимость. М: Наука, 1986, 225 с.
- 7. Зима В.Л., Мирутенко В.И., Давыдовская Т.Л. Биофизические методы исследования. Киев: УМК ВО, 1990, 170 с.
 - 8. Регистрация одиночных каналов/ Ред. Б.Сакман и Э.Неер. М: Мир, 1987, 448 с

- 9. Болдырев А.А., Кяйвяряйнен Е.И., Илюха В.А. Биомембранология. Учебное пособие для студентов высших учебных заведений, специализирующихся в области биологии, медицины и психологии. Петрозаводск: Изд-во Кар НЦ РАН. 2006. 226с.
 - 10. Рубин А.Б. Биофизика (Том 2). М: МГУ, НАУКА, 2004. 469 с.
- 11. Болдырев А.А., Курелла Е.Г., Павлова Т.Н. и др. Биологические мембраны. Уч. пособие. М: изд. МГУ. 1992. 140 с.
- 12. Введение в биомембранологию / А.А. Болдырев, С.В. Котлевцев и др. М: изд. $M\Gamma V$. 1990. 208 с.
- 13. Гелетюк В.И., Казаченко В.И. Кластерная организация ионных каналов. -М: Наука, 1990, 223 с.
 - 14. Гринюс Л.Л. Транспорт макромолекул у бактерий. М: Наука, 1986. 204 с.
 - 15. Скулачёв В.А. Энергетика биологических мембран. М: Наука, 1989, 564 с.
 - 16. Ясуо Кагава. Биомембраны. М: Высшая школа, 1985, 303 с.
- 17. Журавлёв А.И. Квантовая биофизика животных и человека: учебное пособие. М: БИНОМ. Лаборатория знаний, 2011 398 с.
- 18. Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах. Эксперимент и теория. М: ИКИ, 2008. 300 с.
 - в) ресурсы сети Интернет:
- <u>https://openedu.ru/course/msu/BIOPHY/#</u> Биофизика, платформа Открытое образование
- <u>https://openedu.ru/course/msu/MEDBIO/</u> медицинская биофизика: молекулы и болезни, платформа Открытое образование
 - https://biomolecula.ru/articles
- <u>http://cnb.uran.ru/userfiles/213219.pdf</u> Биохимия. Учебник под. Ред. чл.-корр. РАН
 E.C. Северина . 5-у издание М: ГЭОТАР Медиа 2011. 768 стр.
- <u>https://e.lanbook.com/book/10122</u> Рубин, А.Б. Биофизика: В 2 т. Т. 1 : Теоретическая биофизика: Учебник.— М. : МГУ имени М.В.Ломоносова, 2004. 448 с
- http://e.lanbook.com/book/49548 Клетка. Повреждение клетки Лобанов, С.А. Клетка. Повреждение клетки.: Учебные пособия / С.А. Лобанов, Е.В. Данилов, А.В. Данилов. Электрон. дан. БГПУ имени М. Акмуллы, 2011. 76 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - 9EC ZNANIUM.com https://znanium.com/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Жаркова Любовь Петровна, к.б.н., доцент, кафедра физиологии человека и животных НИ ТГУ.