Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Устройства генерирования и формирования сигналов

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки / специализация: радиоэлектронные системы передачи информации Форма обучения

Очная

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-2. Способен проводить научно-исследовательские и опытно—конструкторские разработки функциональных приборов и устройств радиоэлектроники.
- ПК-3. Способен формулировать математические модели процессов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.
- ПК-5. Способен формировать и реализовывать программы макетных и экспериментальных исследований.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 2.1. Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем.
- ИПК 2.2. Использует современных пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации.
- ИПК 2.3. Оформляет результаты разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам.
- ИПК 3.1. Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах.
- ИПК 3.2. Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем.
- ИПК 5.1. Формирует программу проведения экспериментальных исследований.
- ИПК 5.2. Обосновывает программу эксперимента, обрабатывает результаты эксперимента, оценивает погрешности экспериментальных результатов.
- ИПК 5.3. Владеет: методикой и техникой проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методами анализа результатов измерений.

2. Задачи освоения дисциплины

Изучить основы научно-технической информации о структуре, принципах функционирования, параметрах и схемотехнических методах разработки устройств генерирования, формирования и преобразования радиотехнических сигналов.

В результате освоения дисциплины обучающийся формирует совокупность знаний и умений о:

- физических принципах функционирования современных радиопередающих систем и их узлов: источников электромагнитных колебаний радиодиапазона и устройств стабилизации их параметров;
- основных методах информационного управления параметрами электромагнитных колебаний;
- методах расчета и моделирования устройств генерирования и формирования сигналов;

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к **Общепрофессиональному циклу. Обязательная часть Б1.0.0.** Образовательной программы по направлению **11.05.01.**

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

шестой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Б1.0.0.01 «Радиоэлектроника, Б1.О.0.09 «Схемотехника аналоговых электронных устройств», Б1.П.О.03 «Материалы и компоненты радиоэлектроники».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 32 ч.

-лабораторный практикум: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Элементная база, схемы и основные характеристики усилителей мощности (генераторов с внешним вобуждением).

- **Тема 1.** Структурная схема и энергетические характеристики высокочастотных генераторов с внешним возбуждением (ГВВ). Режимы работы активных элементов (АЭ) и их связь с коэффициентом полезного действия ГВВ. Режим отсечки, критический и перенапряженный режимы. Расчет энергетических характеристик. Спектральный анализ токов активных элементов ГВВ. Типы фильтров гармоник и расчет их характеристик.
- **Тема 2.** Расчет и разработка принципиальной схемы транзисторного ГВВ. Математическое моделирование работы ГВВ для различных режимов АЭ, оценка энергетических характеристик. Исследование избирательных свойств ГВВ с фильтрами различных типов.

Раздел 2. Амплитудная модуляция (АМ) ГВВ.

- **Тема 1.** Модуляция смещением, коллекторная модуляция, энергетические характеристики ГВВ с АМ. Спектры сигналов с АМ. Нелинейные искажения при АМ и способы их оценки.
- **Тема 2.** Математическое моделирование работы ГВВ с АМ, анализ временных и спектральных характеристик выходных сигналов. Экспериментальное исследование модуляции смещением на резонансном усилителе.

Раздел 3. Автогенераторы (А) гармонических колебаний.

- **Тема 1.** Уравнения стационарных колебаний A, баланс фаз и баланс амплитуд. Колебательные характеристики AЭ. Частота автоколебаний и ее связь с характеристиками AЭ. Выбор режима AЭ для надежного самовозбуждения, минимизация нелинейных искажений, понятие запаса по самовозбуждению. Автоматическое смещение.
- **Тема 2.** Эквивалентные и трехточечные схемы транзисторных автогенераторов, баланс фаз. Влияние характеристик АЭ на стабильность частоты генерации.
- **Тема 3.** Источники высокостабильных колебаний для опорных генераторов радиосистем. Способы повышения стабильности частоты. Кварцевая стабилизация.
- **Тема 4.** Математическое моделирование работы транзисторного автогенератора, собранного по трехточечной схеме. Исследование влияния основных параметров схемы на условия самовозбуждения и режимы работы АЭ. Анализ работы автогенератора с автосмещением, возможность возбуждения паразитных автомодуляционных процессов.

Раздел 4. Угловая модуляция. Частотная (ЧМ) и фазовая (ФМ) типы модуляции.

- **Тема 1**. Способы управления частотой и фазой, прямой и косвенный методы ЧМ модуляции, их достоинства и недостатки. Спектральные характеристики сигналов с угловой модуляцией. Причины возникновения паразитной амплитудной модуляции (ПАМ) и способы ее уменьшения. Особенности построения каскадов передатчиков с угловой модуляцией. Сигналы с частотной и фазовой манипуляцией.
- **Тема 2.** Математическое моделирование работы транзисторного автогенератора с электрической перестройкой частоты с помощью варикапа. Исследование влияния ПАМ на спектральные характеристики генератора. Экспериментальное исследование СВЧ автогенератора с электрической перестройкой частоты.
- **Тема 3.** Синтезаторы частоты и их характеристики. Пассивные и активные синтезаторы, аналоговые и цифровые синтезаторы. Синтезаторы на основе системы ФАПЧ.

Раздел 5. Вакуумные источники СВЧ колебаний.

- **Тема 1.** Пролетный клистрон, электрические характеристики, механизм усиления, условия группировки электронного потока.
- **Tema 2.** Лампа бегущей волны, конструкция, механизм усиления, упрощенный расчет условий группировки электронного потока.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Подготовка к выполнению лабораторных работ оформление научно-технических результатам отчетов ПО экспериментальных исследований проводятся обучающимися самостоятельно. Для указанной подготовки студенты используют материалы теоретических разделов, методических пособий методических рекомендаций, размещенные на сайте системы «Электронный университет-MOODLE» http://moodle.tsu.ru : теоретические разделы дисциплины «Устройства генерирования формирования И сигналов», http://moodle.tsu.ru/course/view.php?id=2553. Контроль качества усвоения теоретических положений работ и методических указаний проводится путем

устного собеседования. Электронные варианты отчетов по лабораторным работам загружаются студентами на сайт курса системы moodle и оцениваются преподавателем.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Промежуточная аттестация проводится в шестом семестре в форме устного экзамена по билетам. Билет содержит два теоретических вопроса. Продолжительность зачета 1,5 часа.

Первый вопрос в каждом билете сформулирован для проверки следующих компетенций/индикаторов компетенций: ПК-2/ ИПК 2.1, ИПК 2.2, ИПК 2.3; ПК-3/ ИПК 3.1, ИПК 3.2.

Второй вопрос в каждом билете сформулирован для проверки следующих компетенций/индикаторов компетенций: ПК-5/ ИПК 5.1, ИПК 5.2, ИПК 5.3.

Примерный перечень теоретических вопросов

- 1. Функциональная схема ГВВ (усилителя мощности), принцип работы узкополосных ГВВ, основные параметры усилителя.
- 2. Классификация режимов активного элемента (транзистора) в усилителях мощности.
- 3. Гармонический анализ токов активного элемента усилителя мощности в различных режимах. Оптимальный режим работы активного элемента.
- 4. Зависимость режима работы ГВВ от сопротивления нагрузки в выходной цепи и питающих напряжений на электродах АЭ. Обобщённые нагрузочные характеристики генератора. Особенности работы ГВВ на комплексную нагрузку АЭ.
- 5. Выбор оптимального режима отсечки активного элемента (для критического режима).
- 6. Выбор активного элемента для усилителей мощности (с учетом ограничений).
- 7. Инженерный расчет усилителя мощности в критическом режиме на заданную мощность.
- 8. Влияние амплитуды входного напряжения на режим усилителя мощности.
- 9. Простейшие Г-образные цепи согласования (трансформации) нагрузки усилителя мощности, их особенности, расчетные формулы.
- 10. Избирательные свойства простейших цепей согласования нагрузки усилителя мощности, коэффициент фильтрации.
- 11. Вывести и обсудить формулы для коэффициентов фильтрации двух простейших Г-образных схем согласования нагрузки в усилителях мошности.
- 12. П-образная цепь согласования (трансформации) нагрузки усилителя мощности, ее особенности, расчетные формулы.
- 13. Необходимость сложения мощностей АЭ. Параллельное и двухтактное включения АЭ. Свойства ГВВ с параллельным и двухтактным включением АЭ, энергетические соотношения в них. Особенности схем с параллельным и двухтактным включением транзисторов.
- 14. Амплитудная модуляция в радиопередатчиках, общие понятия, возможные метода АМ в усилителях мощности.
- 15. Амплитудная модуляция смещением (общая схема, принцип модуляции), обоснование выбора режима «молчания».
- 16. Оценка кпд усилителя мощности с амплитудной модуляцией смещением.

- 17. Усиление АМ колебаний, качественное обоснование выбора режима отсечки.
- 18. Коллекторная модуляция (принцип модуляции).
- 19. Уравнения баланса фаз и амплитуд автогенераторов (различные формы уравнений); понятия колебательной характеристики, управляющего сопротивления.
- 20. Анализ стационарного режима автогенератора с помощью колебательных характеристик, мягкий и жесткий режимы самовозбуждения.
- 21. Недонапряженный режим активного элемента автогенератора, обоснование необходимости ограничения на запас самовозбуждения.
- 22. Обоснование необходимости автоматического смещения в автогенераторе, схема эмиттерного автосмещения.
- 23. Высокочастотная эквивалентная схема автогенератора с идеальным трансформатором, причины неполного фазирования. Необходимость компенсации фазы средней крутизны коллекторного тока в транзисторных АГ
- 24. Порядок расчета режима транзистора в автогенераторе (недонапряженный режим).
- 25. Обобщенная трехточечная схема, правила выбора реактивных элементов трехточечной схемы.
- 26. Варианты трехточечной схемы автогенератора на транзисторе; расчетные формулы: для частоты автоколебаний, коэффициента обратной связи, сопротивления контура для выходной цепи транзистора (с введением коэффициента включения контура в выходную цепь транзистора).
- 27. Нестабильность частоты автоколебаний автогенератора (ее причины), влияние на стабильность параметров колебательного контура.
- 28. Кварцевая стабилизация, эквивалентная схема и характеристики кварца, варианты включения кварца в трехточечные схемы автогенератора.
- 29. Источники опорных высокостабильных колебаний для синтезаторов частот, их характеристики.
- 30. Структурные схемы аналоговых (пассивных) синтезаторов частоты прямого синтеза; схема на основе умножителя частоты, ее недостатки; схема с умножителями и делителями частоты, формула для выходной частоты.
- 31. Схема синтезатора частоты на основе кольца ФАПЧ с делителями частоты, фазовым детектором, управляемым генератором; условие синхронизма.
- 32. Цифровой вычислительный синтезатор частоты (с накопителем фазы), принцип работы.
- 33. Цифровой вычислительный синтезатор (с цифроаналоговыми преобразователями) с возможностью автоматической перестройки частоты, принцип работы.
- 34. Угловая модуляция в радиопередатчиках, частотная и фазовая модуляция, сравнительные характеристики.
- 35. Способы ЧМ и ФМ, схемы модуляторов.
- 36. Искажения сигналов при угловой модуляции и способы их уменьшения.
- 37. Прямой и косвенный методы угловой модуляции в передатчиках; их достоинства и недостатки, связанные с паразитной амплитудной модуляцией (ПАМ).
- 38. Цифровой (двухпозиционный) и импульсный виды модуляции. Основные параметры радиосигнала с импульсными видами модуляции.

- 39. Структурные схемы передатчиков с угловой модуляцией и обсуждение необходимости узлов развязки.
- 40. Конструкция, схема питания и физический принцип работы пролетного клистрона.
- 41. Схема и принцип действия лампы бегущей волны (ЛБВ-О).

Студенты, не выполнившие полностью задания по лабораторным работам, не допускаются к сдаче теоретического экзамена.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» и соответствуют критериям оценивания результатов обучения, приведенным в таблице.

Компетенция	Индикатор компетенции	Код и наименование результатов обучения (планируемые результаты обучения, характеризующие этапы формирования компетенций)	Критерии оценивания результатов обучения			
			Не удовлет воритель но	удовлетворител ьно	Хорошо	Отлично
ПК-2. Способен проводить научно- исследовательские и опытно- конструкторские разработки функциональных приборов и устройств радиоэлектроники	ИПК 2.1. Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем. ИПК 2.2. Использует современных пакеты прикладных программ для разработки структурных, функциональ-ных и принципиальных схем	ОР 2.1.1. Обучающийся сможет проводить целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем. ОР 2.2.1. Обучающийся сможет использовать современные пакеты прикладных программ для разработки структурных, функциональ-ных и принципиальных схем радиоэлектронных	Не может проводить целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем. Не способен использовать современные пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации.	Проявляет ограниченные способности: -сбора и анализа данных для разработки структурных, функциональных и принципиальных схем; -использования прикладных программ для разработки структурных, функциональных и принципиальных и принципиальных и труктурных, функциональных и принципиальных схем радиоэлектронных устройств; -оформления	В целом за отдельными исключениями проявляет способности: -сбора и анализа данных для разработки структурных, функциональных и принципиальных схем; -использования прикладных программ для разработки структурных, функциональных и принципиальных схем; -использования прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств; -оформления	Может проводить целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем. Использует современные пакеты прикладных программ для разработки структурных, функциональных и принципиальных и принципиальных и принципиальных схем радиоэлектронных устройств комплексов передачи информации. Может оформлять

	радиоэлектронных устройств комплексов передачи информации. ИПК 2.3. Оформляет результаты разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам.	устройств комплексов передачи информации. ОР 2.3.1. Обучающийся сможет оформлять результаты разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам	Не может оформлять результаты разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам	результатов разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам	результатов разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам	результаты разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств по принятым стандартам
ПК-3. Способен формулировать математические модели процессов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию	ИПК 3.1. Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах.	ОР 3.1.1. Обучающийся сможет использовать фундаментальные знания о физической природе и физических явлениях, происходящих в элементах и объектах радиоэлектронных систем и комплексов. ОР 3.2.1.	Не использует фундаментальные знания о физической природе и физических явлениях, происходящих в элементах и объектах радиоэлектронных систем и комплексов. Не может разрабатывать математические модели исследуемых физических процессов, приборов,	Проявляет ограниченные способности: -использования фундаментальных знаний о физической природе и физических явлениях, происходящих в элементах и объектах радиоэлектронных систем и комплексов;	В целом за отдельными исключениями проявляет способности: -использования фундаментальных знаний о физической природе и физических явлениях, происходящих в элементах и объектах радиоэлектронных систем и комплексов; -разрабатывать	Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах. Может разрабатывать математические модели исследуемых физических процессов, приборов, схем и электронных

	ИПК 3.2. Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем.	Обучающийся сможет разрабатывать математические модели исследуемых физических процессов, приборов, схем и электронных систем.	схем и электронных систем.	-разрабатывать математические модели исследуемых физических процессов, приборов, схем и электронных систем.	математические модели исследуемых физических процессов, приборов, схем и электронных систем.	систем.
ПК-5. Способен формировать и реализовывать программы макетных и экспериментальны х исследований	ипк 5.1. Формирует программу проведения экспериментальных исследований. ипк 5.2. Обосновывает программу эксперимента, обрабатывает результаты эксперимента, оценивает погрешности экспериментальных результатов. ипк 5.3.	ОР 5.1.1. Обучающийся сможет формировать программы проведения экспериментальных исследований. ОР 5.2.1. Обучающийся сможет обосновывать программы проведения экспериментов, методы обработки результаты эксперимента, оценивать погрешности экспериментальных результатов.	Не может формировать программу проведения экспериментальных исследований. Не способен обосновывать программу эксперимента, обрабатывать результаты эксперимента, оценивать погрешности экспериментальных результатов. Не владеет: методикой и техникой	Проявляет ограниченные способности: -формировать программу проведения экспериментальных исследований; -обосновывать программу эксперимента, обрабатывать результаты эксперимента, оценивать погрешности экспериментальных результатов; -владения	В целом за отдельными исключениями проявляет способности: -формировать программу проведения экспериментальных исследований; -обосновывать программу эксперимента, обрабатывать результаты эксперимента, оценивать погрешности экспериментальных результатов;	Формирует программу проведения экспериментальных исследований. Способен обосновывать программу эксперимента, обрабатывать результаты эксперимента, оценивать погрешности экспериментальных результатов. Владеет: методикой и техникой проведения экспериментальных исследований и измерений параметров

	Владеет: методикой и техникой проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методами анализа результатов измерений.	ОР 5.3.1. Обучающийся освоит: методики проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методы анализа результатов измерений.	проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методами анализа результатов измерений.	методикой и техникой проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методами анализа результатов измерений.	-владения методикой и техникой проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методами анализа результатов измерений.	и характеристик изделий электронной техники; методами анализа результатов измерений.
--	---	--	---	--	--	--

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle». https://moodle.tsu.ru/course/view.php?id=2553
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (пп. 9,10).
- в) Методические указания по проведению лабораторных работ. Электронный ресурс «Устройства генерирования и формирования сигналов. Лабораторный практикум», https://moodle.tsu.ru/course/view.php?id=2554
- г) Методические указания по организации самостоятельной работы студентов: разделы теоретического курса по дисциплине https://moodle.tsu.ru/course/view.php?id=2553, элементы методических рекомендаций по планированию и проведению экспериментальных исследований и формированию технических отчетов https://moodle.tsu.ru/course/view.php?id=2554

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Проектирование радиопередающих устройств для систем подвижной радиосвязи: учебное пособие / Зырянов Ю. Т., Федюнин П. А., Белоусов О. А.. 5-е изд. испр., СПб: Лань, 2022. 116 с.
- 2.Радиопередающие устройства в системах радиосвязи : учебное пособие / Зырянов Ю. Т., Федюнин П. А., Белоусов О. А., Рябов А. В., Головченко Е. В., Курносов Р. Ю.. 3-е изд., стер. СПб: Лань, 2019. 176 с.. URL: https://e.lanbook.com/book/112070. URL: https://e.lanbook.com/img/cover/book/112070.
- 3. Головин О.В. Устройства генерирования, формирования, приема и обработки сигналов. Учебное пособие для вузов. М.: Горячая линия Телеком, 2012.-783 с.
- 4. Генерирование колебаний и формирование радиосигналов: учеб. пособие / В.Н. Кулешов, Н.Н. Удалов, В.М. Богачев и др.; под ред. В.Н. Кулешова и Н.Н. Удалова. М.: Издательский дом МЭИ, 2008. 416 с.
 - б) дополнительная литература:
- 1. Каганов, В.И. Основы радиоэлектроники и связи. [Электронный ресурс] : Учебные пособия / В.И. Каганов, В.К. Битюков. Электрон.дан. М. : Горячая линия-Телеком, 2012. 542 с. Режим доступа: http://e.lanbook.com/book/5158.
- 2. Владимиров С.Н., Дейкова Г.М., Журавлев В.А., Майдановский А.С., Мещеряков.В.А., Новиков С.С. Нелинейные и параметрические явления в радиотехнике: Лабораторный практикум / Под ред. А.С. Майдановского. Томск: Изд-во НТЛ. 2009. 276 с.
- 3. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы: Учебное пособие для студентов вузов. -9-е изд., стер. СПб: Лань, 2015.-480 с.
 - в) ресурсы сети Интернет:
- 1. Научная библиотека Томского государственного университета [Электронный ресурс] / НИ ТГУ, Научная библиотека ТГУ. Электрон. дан. Томск, 1997-. URL: http://www.lib.tsu.ru/ru;
- 2. Ресурсы «Электронный университет-MOODLE» http://moodle.tsu.ru : теоретические разделы дисциплины «Устройства генерирования и формирования сигналов» https://moodle.tsu.ru/course/view.php?id=2553

3. Электронный ресурс «Устройства генерирования и формирования сигналов. Лабораторный практикум» - https://moodle.tsu.ru/course/view.php?id=2554

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
- публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
- Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (ЕМИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешанном формате («Актру»).

Аудиторный фонд, оснащенный мультимедийным оборудованием; пакетом NI Multisim 12 для виртуального моделирования и платформами NI ELVIS II и ELVIS III+ для проектирования и экспериментального исследования электронных схем в лабораторном практикуме; фондами и ресурсами научной библиотеки ТГУ. Компьютерные классы имеют порядка 40 рабочих мест для выполнения лабораторных занятий и индивидуальной работы с выходом в Интернет на сайт http://info.rff.tsu.ru.

15. Информация о разработчиках

Новиков Сергей Сергеевич, доцент, кандидат физ.-мат. наук, кафедра радиоэлектроники ТГУ, доцент.