Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Избранные главы аналитической химии

по специальности

04.05.01 Фундаментальная и прикладная химия

Специализация:

Фундаментальная и прикладная химия

Форма обучения **Очная**

Квалификация **Химик/ Химик-специалист. Преподаватель химии**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.В. Шелковников

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- БК-1. Способен применять общие и специализированные компьютерные программы при решении задач профессиональной деятельности;
- БК-2. Способен использовать этические принципы в профессиональной деятельности;
- БК-3. Способен использовать принципы и средства профессиональной коммуникации для эффективного взаимодействия;
- ОПК-1. Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений в различных областях химии;
- ПК-5. Способен определять способы, методы и средства решения технологических задач в рамках прикладных НИР и НИОКР;
- ПК-6. Способен осуществлять контроль качества сырья, компонентов и выпускаемой продукции химического назначения, проводить паспортизацию товарной продукции.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РОБК 1.1 Знает правила и принципы применения общих и специализированных компьютерных программ для решения задач профессиональной деятельности
- РОБК 1.2 Умеет применять современные ІТ-технологии для сбора, анализа и представления информации; использовать в профессиональной деятельности общие и специализированные компьютерные программы
- РОБК 2.1 Знает основы и принципы профессиональной этики в соответствующей области профессиональной деятельности
- РОБК 2.2 Умеет проектировать решение профессиональных задач с учетом принципов профессиональной этики
 - РОБК 3.1 Знает средства, функции и принципы профессиональной коммуникации
- РОБК 3.2 Умеет выстраивать профессиональную коммуникацию; представлять результаты своей работы с учетом норм и правил принятых в профессиональном сообществе.
- РООПК 1.1 Знает теоретические основы неорганической, органической, физической и аналитической химии, применяет их при решении профессиональных задач в других областях химии.
- РООПК 1.2 Умеет систематизировать и интерпретировать результаты экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии
- РООПК 1.3 Умеет грамотно формулировать заключения и выводы по результатам работы
- РОПК 5.1 Умеет готовить детальные планы отдельных стадий прикладных НИР и НИОКР
- РОПК 5.2 Умеет выбирать технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач в рамках прикладных НИР и НИОКР
 - РОПК 5.3 Умеет проводить испытания инновационной продукции
- РОПК 6.1 Умеет выполнять стандартные операции на высокотехнологическом оборудовании для характеристики сырья, промежуточной и конечной продукции химического производства
- РОПК 6.2 Умеет составлять протоколы испытаний, паспорта химической продукции, отчеты о выполненной работе по заданной форме

2. Задачи освоения дисциплины

Получить системное понимание о методах регрессионного и проекционного анализа многомерных данных;

- Сформировать представления, позволяющие самостоятельно выбрать математические методы и метрики при анализе и интерпретации многомерных данных;
- Освоить теоретические основы физических методов идентификации, количественного анализа и исследования;
- Научиться осуществлять выбор вариантов физических методов для исследования состава веществ;
- Научиться применять серийное оборудование, овладеть техникой исследования веществ спектроскопическими методами;
- Получить навыки интерпретации спектрограмм, построения градуировочных графиков, обработки аналитических сигналов с помощью автоматизированных программных комплексов для решения конкретных аналитических задач.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Модуль Аналитическая химия.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Девятый семестр, зачет Девятый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: неорганическая химия, аналитическая химия, математический анализ, физика, методы математической статистики в химии, информатика.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 16 ч.
- -лабораторные: 32 ч.
- -практические занятия: 16 ч.
 - в том числе практическая подготовка: 48 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Метод распознавания образов. Кластерный анализ. Сбор данных. Предварительная обработка данных. Трансляция, нормировка, масштабирование данных. Интервальное масштабное преобразование. Автомасштабное преобразование на единицу дисперсии.

Тема 2. Понижение размерности многомерных данных. Метод главных компонент.

Тема 3. Регрессионный анализ многомерных данных. Регрессия на главные компоненты. Метод PLS-регрессии. Методы искусственного интеллекта и их реализация в компьютерных языках программирования.

Тема 4. ИК- и КР-спектроскопия, теоретические основы и практические аспекты применения

Теоретические основы колебательной спектроскопии. Основные типы колебаний и соответствующие им области спектра. Основные элементы ИК-спектрометра, ИК-фурье спектрометр. Техника эксперимента. Спектроскопия диффузного отражения и нарушенного полного внутреннего отражения в ИК-области. Анализ ИК-спектров. Основы количественного и качественного анализа методом ИК-спектроскопии.

Основы эффекта комбинационного рассеяния. Устройство спектрометра КР. Применение метода КР. Определение структуры молекулы по данным ИК-спектроскопии и спектроскопии КР. Основы количественного анализа методом КР-спектроскопии.

Тема 5. Использование электронных пучков для анализа состава и структуры вешеств

Свойства электронных пучков. Волновые свойства частиц. Гипотеза де Бройля. Дифракция электронов. Экспериментальные подтверждения гипотезы де Бройля, опыт Томсона. Применение микрочастиц для исследования структуры вещества. Источники и детекторы электронов. Магнитные фокусирующие линзы. Процессы, происходящие при воздействии электронов на вещество.

Тема 6. Сканирующая электронная микроскопия

Ограничения оптической микроскопии. Устройство и принцип действия сканирующего электронного микроскопа. Характеристики электронного пучка. Вторичная электронная эмиссия. Формирование изображения в первичных и вторичных электронах. Методы элементного анализа в СЭМ. Рентгенофлуоресцентный анализ в сканирующей микроскопии. Возможности современных приборов. Совместное использование электронного и ионного пучка. Низковакуумные микроскопы. Требования к образцам.

Тема 7. Просвечивающая электронная микроскопия

Устройство просвечивающего электронного микроскопа Регистрация электронов и изображения. Вакуумная система. Единицы измерения вакуума. Разрешение в электронном микроскопе. Дифракция медленных электронов. Дифракция отраженных быстрых электронов. Формирование дифракционной картины и изображений. Контраст в ПЭМ. Дифракция и микродифракция.

9. Текущий контроль по дисциплине

Текущий контроль успеваемости обеспечивает оценку освоения дисциплины и проводится на протяжении периода обучения по дисциплине в рамках организации и проведения лекционных занятий, самостоятельной работы студентов путём обсуждения и контроля выполнения индивидуальных расчётных заданий, проведения опроса перед выполнением лабораторных работ, защиты представленных по ним отчетов и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в девятом семестре проводится письменно в форме теста. Экзаменационный билет состоит из 12 тестовых заданий. Продолжительность зачета 1 час.

Экзамен в девятом семестре проводится письменно в форме теста. Экзаменационный билет состоит из 15 тестовых заданий. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте $T\Gamma Y$ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru/enrol/index.php?id=28512
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Марьянов Б.М. Избранные главы хемометрики: учеб. пособие для студентов вузов. Томск.: Изд-во ТГУ, 2004.-164 с.
- Шачнева Е.Ю. Хемометрика. Базовые понятия: Учебно-методическое пособие. СПб.: Изд-во «Лань», 2017. 160 с.
- Дребущак Т. Н. Введение в хемометрику. Практика анализа экспериментальных данных: Учебное пособие/Новосиб. гос. ун-т //Новосибирск: Новосиб. гос. унт. 2011.
- − Померанцев А. Л. Хемометрика в Excel: учебное пособие //Томск: Изд-во ТПУ.
 − 2014.
- Пентин Ю. А., Курамшина Г. М. Основы молекулярной спектроскопии : учеб. пособие для вузов. М. : Мир : БИНОМ. Лаборатория знаний, 2008. 398 с
- Ельяшевич М. А. Атомная и молекулярная спектроскопия: Молекулярная спектроскопия М.: URSS: ЛИБРОКОМ, 2012. 527 с.
- Криштал М. М., Ясников И. С., Полунин В. И. [и др.] Сканирующая электронная микроскопия и рентгено-спектральный микроанализ в примерах практического применения: учеб. пособие для вузов / М.: Техносфера, 2009. 206 с.
- Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М: Мир, 2003.
- Ю.А. Пентин, Г.М. Курамшина. Основы молекулярной спектроскопии: уч. пособие / М.: Мир: БИНОМ, Лаборатория знаний. 2008. 398 с.
 - б) дополнительная литература:
 - Wehrens R. Chemometrics with R. New York: Springer, 2011. T. 3.
 - Brereton R.G. Chemometrics. Wiley, 2018.
 - Mark H., Workman Jr J. Chemometrics in spectroscopy. Elsevier, 2010.
 - Marini F. Chemometrics in food chemistry. Newnes, 2013.
- Жуков А.Ф. Аналитическая химия. Физические и физико-химические методы анализа (электронный ресурс) М.: МГУ, 2017. 250 с.

http://sun.tsu.ru/limit/2016/000385853/000385853.djvu

- Алов Н.В., Лазов М.А., Ищенко А.А. Рентгеновская фотоэлектронная спектроскопия. Учеб. пособ. (Моск. гос. ун-т тон. хим. технол.). М: МИТХТ. 2013. 66 с.
- в) ресурсы сети Интернет:
- Кучерявский С. и др. Введение в хемометрику. 2023. [Электронный ресурс] https://github.com/chemometrics-ru/book/blob/main/Введение-в-хемометрику.pdf
- Родионова О. Е., Померанцев А. Л. Хемометрика в аналитической химии //URL: http://pca.narod.ru/chemometrics-review.pdf. 2006.
- Российское Хемометрическое Общество Учебники и пособия https://rcs.chemometrics.ru/
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

- https://serc.carleton.edu/research_education/geochemsheets/techniques/XRF.html
- $\frac{\text{http://sun.tsu.ru/limit/2016/000385853/000385853.djvu}}{\text{методические материалы по курсу «Физические методы исследования»;}}$
- $\underline{\text{http://edu.tsu.ru/eor/resourse/557/tpl/index.html}}$ онлайновые учебно-методические материалы по курсу «Физические методы исследования;
- $\underline{\text{http://edu.tsu.ru/eor/resourse/557/tpl/index.html}}$ Физико-химические методы анализа. Учебно-методический комплекс (УМК).
- http://www.vmk.ru/product/programmnoe_obespechenie/atom.html Программное обеспечение атомно-эмиссионного спектрального анализа. Программа «Атом»

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - Научная электронная библиотека eLIBRARY.RU http://elibrary.ru/
 - Электронная библиотека диссертаций (РГБ) http://diss.rsl.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

- лабораторная аудитория (№ 213, 6-го учебного корпуса ТГУ)
- лаборатория НИЛ МОС ТГУ (№ 419, 6-го учебного корпуса ТГУ)

Все лаборатории оснащены вытяжными шкафами, стеклянной и фарфоровой лабораторной посудой, измерительным инструментом (весы, термометры, рН-метры, УФ-спектрофотометр и т.д.). Кроме того, в лабораториях имеется нагревательное оборудование (электроплитки и термостатирующие шкафы), и другое оборудование.

Учебный процесс по дисциплине «Физические методы исследования» поддерживается самым современным оборудованием:

- спектрофотометры «Evolution 600» USA, «Specol»; СФ-56
- аналитические весы АДВ-200;
- спектрометр EDX Pocket Series (SkyrayInstrument, КНР)

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Изаак Татьяна Ивановна, канд. хим. наук, доцент, кафедра аналитической химии Национального исследовательского Томского государственного университета, доцент.