Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Физическая химия полимеров

по направлению подготовки

04.03.01 Химия

Направленность (профиль) подготовки: **Химия**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.В. Шелковников

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений.
- ОПК-2 Способен проводить с соблюдением норм техники безопасности химический эксперимент, включая синтез, анализ, изучение структуры и свойств веществ и материалов, исследование процессов с их участием.
- ПК-1 Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 1.1 Систематизирует и анализирует результаты химических экспериментов, наблюдений, измерений, а также результаты расчетов свойств веществ и материалов.
- ИОПК 1.2 Предлагает интерпретацию результатов собственных экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии.
- ИОПК 1.3 Формулирует заключения и выводы по результатам анализа литературных данных, собственных экспериментальных и расчетно-теоретических работ химической направленности.
- ИОПК 2.1 Работает с химическими веществами с соблюдением норм техники безопасности.
- ИОПК 2.2 Проводит синтез веществ и материалов разной природы с использованием имеющихся методик.
- ИОПК 2.3 Проводит стандартные операции для определения химического и фазового состава веществ и материалов на их основе.
- ИОПК 2.4 Проводит исследования свойств веществ и материалов с использованием серийного научного оборудования.
- ИПК 1.1 Планирует отдельные стадии исследования при наличии общего плана HИР.
- ИПК 1.2 Готовит элементы документации, проекты планов и программ отдельных этапов НИР.
- ИПК 1.3 Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач НИР.
 - ИПК 1.4 Готовит объекты исследования.

2. Задачи освоения дисциплины

- Освоить понятийный аппарат дисциплины.
- Овладеть современными теориями фазовых и физических состояний и структурообразования полимеров и материалов на их основе.
- Научиться на базе теоретического материала связывать или прогнозировать практически значимые свойства ВМС с их строением, делать расчеты по известным формулам, анализировать ТМК, изотермы растяжения и др. графические зависимости, применять полученные знания для решения задач исследовательского и прикладного характера, прогнозировать области использования конкретных полимерных материалов.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Модуль Высокомолекулярные соединения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Седьмой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: органическая, физическая химия, высокомолекулярные вещества, физика и строение вещества.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 32 ч.
 - в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Агрегатные, фазовые, физические состояния полимеров.

Физические состояния и переходы в полимерах.

Кристаллическое состояние полимеров.

Стеклообразное состояние полимеров.

Высокоэластическое состояние полимеров.

Вязкотекучее состояние полимеров.

Тема 2. Структурообразование в полимерах.

Надмолекулярные структуры кристаллических и аморфных полимеров.

Тема 3. Свойства полимеров.

Механические свойства полимеров. Ориентированное состояние полимеров.

Пластификация полимеров. Наполненные полимеры.

Электрические свойства полимеров. Газопроницаемость полимеров. Самоорганизация полимеров.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольной работы, тестов по лекционному материалу, выполнения реферативной работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в седьмом семестре проводится в тестовой форме по билетам. Экзаменационный билет состоит из 20 тестовых вопросов. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru/enrol/index.php?id=28544
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План практических занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Киреев В. В. Высокомолекулярные соединения: учебник для бакалавров / В. В. Киреев. М.: Издательство Юрайт, 2013. 602 с. Серия. Бакалавр. Углубленный курс.
- Кулезнев В. Н., Шершнев В. А. Химия и физика полимеров: Учебное пособие / В. Н. Кулезнев, В. А. Шершнев. СПб. : Издательство «Лань», 2014. 400 с.
- Н. Г. Рамбиди. Структура полимеров от молекул до наноансамблей: Учебное пособие / Н. Г. Рамбиди Долгопрудный: Издательский дом «Интеллект», 2009. 264 с
 - б) дополнительная литература:
- Тагер А. А. Физико-химия полимеров: Издание 4-е, переработанное и дополненное / А. А. Тагер. М.: Научный мир, 2007. 544 с.
 - в) ресурсы сети Интернет:
 - http://www.chem.msu.ru/rus/teaching/vms.html учебные материалы по химии
 - http://elibrary.ru/query_results.asp публикации по физической химии полимеров.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Березина Елена Михайловна, канд. хим. наук, доцент, кафедра высокомолекулярных соединений и нефтехимии Национального исследовательского Томского государственного университета, доцент.