Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Вычислительная гидродинамика

по направлению подготовки

16.04.01 Техническая физика

Направленность (профиль) подготовки: Компьютерный инжиниринг высокоэнергетических систем

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП А.Ю. Крайнов А.В. Шваб Л.Л. Миньков

Председатель УМК В.А. Скрипняк

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-6 Способен осваивать и применять современные физико-математические методы и методы искусственного интеллекта для решения профессиональных задач, составлять практические рекомендации по использованию полученных результатов;.

ОПК-7 Способен представлять результаты исследования в формах отчетов, рефератов, публикаций и презентаций;

ПК-2 Способен самостоятельно применять знания на практике, в том числе составлять математические модели профессиональных задач, находить способы их решения, интерпретировать физический смысл полученного математического результата и документировать его в виде отчета.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 6.1 Знать современные физико-математические методы и методы искусственного интеллекта для решения профессиональных задач в избранной области технической физики.
- ИОПК 6.2 Уметь составлять практические рекомендации по использованию полученных теоретических, расчётных и экспериментальных результатов.
- ИОПК 6.3 Владеть методикой проведения физико-математических исследований явлений и процессов в избранной области технической физики.
 - ИОПК 7.1 Знать основные формы представления результатов исследования.
- ИОПК 7.2 Уметь применять прикладные компьютерные программы для оформления отчетов, рефератов, публикаций и презентаций.
- ИОПК 7.3 Владеть методиками структурного анализа результатов исследования для их представления в формах отчетов, рефератов, публикаций и презентаций.
- ИПК 2.1 Знать способы математического моделирования в области вычислительной теплофизики, аэрогазодинамики, теории горения
- ИПК 2.2 Уметь составлять математические модели профессиональных задач и находить способы их решения
- ИПК 2.3 Владеть навыками анализа и интерпретации результатов математического моделирования

2. Задачи освоения дисциплины

- Освоить основы разработки разностных методов решения уравнений в частных производных.
- Уметь использовать методы математического моделирования для проведения численного эксперимента при разработке технических устройств.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Введение. Понятие численного моделирования течений жидкости и газа. Область вычислительной гидродинамики. Понятие вычислительного эксперимента.

Тема 1. Основные понятия теории разностных схем.

Понятие разностной схемы для уравнения с частными производными. Определение сходимости, аппроксимации, устойчивости разностных схем, простейшие приемы аппроксимации.

Тема 2. Основные приёмы построения разностных схем.

Метод неопределенных коэффициентов. Построение схем предиктор-корректор. Интегральный метод. Метод контрольного объема. Конструирование граничных условий при построении разностных схем.

Тема 3. Методы исследования устойчивости разностных схем.

Принцип максимума для разностных схем. Условие Куранта — Фридрихса — Леви сходимости разностной схемы. Спектральный анализ разностной задачи Коши. Необходимое спектральное условие устойчивости. Принцип замороженных коэффициентов.

Тема 4. Разностные схемы для расчета обобщенных решений.

Механизм возникновения разрывов. Определение обобщенного решения. Дивергентные разностные схемы. Схемы с искусственной вязкостью. Понятие схемной диссипации и дисперсии, вносимых в решение разностной схемой.

- **Тема 5.** Методы расчёта течений без ударных волн, явные схемы бегущего счёта. Неявные схемы бегущего счёта. Метод характеристик-слоями Годунова.
- **Тема 6.** Двухшаговые схемы типа Лакса-Вендроффа для нестационарных уравнений газовой динамики. Схемы с явной искусственной вязкостью.
- **Тема 7.** Метод Годунова для решения задач газовой динамики. Построение и анализ разностной схемы для уравнений акустики. Задача о распаде произвольного разрыва для одномерной газовой динамики. Построение и анализ разностной схемы Годунова для одномерных задач газовой динамики.

Тема 8. Методы расщепления.

Понятие расщепления по физическим параметрам и расщепления по координатам. Метод дробных шагов. Метод факторизации.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения практических заданий и контрольных работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в устной форме по билетам и по самостоятельно выполненной работе группы из 2-3 студентов. Экзаменационный билет состоит из одной части. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=22434
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Л.Л. Миньков, Э.Р. Шрагер. Численные методы решения одномерных нестационарных уравнений газовой динамики. Томск, Изд-во Томского государственного университета.
- 2. К. Флетчер. Вычислительные методы в динамике жидкостей. М.: Мир, 1-2 т., 1991.
 - 3. П.Роуч. Вычислительная гидродинамука М.: Мир,., 1980г..
- 4. Численное решение многомерных задач газоваю динамики под ред. Годунова С.К. изд-во «Наука» Москва 1976г.
- 5. Д.Андерсон, Дж. Таннеилл, Р. Плетчер. Вычислительная гидромеханика и теплообмен. М.:Мир, 1,2.тт.,1990г.. -328 с.

б) дополнительная литература:

- 1. У.Г. Пирумов, Г.С. Росляков. Численные методы газовой динамики. М.: Высшая школа, 1987.
 - 2. А.А. Самарский. Введение в теорию разностных схем. М.: Наука, 1971.
- 3. Рождественский Б.Л, Яненко Н.Н. Системы квазилинейных уравнений и их приложения к газовой динамике М. Наука ,1978 668с.
- 4. Л.Л.Миньков, Э.Р. Шрагер Компьютерное моделирование нестационарных газодинамических процессов. Томск, Электронное учебное пособие. 2009г
 - в) ресурсы сети Интернет:
 - Научная электронная библиотека eLIBRARY.RU: http://elibrary.ru/;
- Электронная библиотека ТГУ: http://www.lib.tsu.ru/ru. Перечень ресурсов информационно-телекоммуникационной сети Интернет.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).

- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 96C IPRbooks http://www.iprbookshop.ru/

При выполнении лабораторных работ используется лицензионное ПО: транслятор Pascal, Fortran, средства графической обработки данных Grapher 8.

14. Материально-техническое обеспечение

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Шрагер Геннадий Рафаилович, д.ф.-м.н., профессор, физико-технический факультет ТГУ, профессор