Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Языки программирования

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Реализация трудовых функций специалистов, обучающихся по специальности Компьютерная безопасность, невозможна без использования языков профессионального уровня. Языки программирования являются базовым инструментом для создания и сопровождения систем информационной безопасности.

Кроме того, умение программировать требуется в абсолютно всех дисциплинах, преподаваемых по данной специальности.

Выбор языков программирования Python и С# для данной дисциплины обусловлен большой востребованностью на рынке труда, наличием удобных библиотек для работы с современными цифровыми технологиями (искусственный интеллект и большие данные). Объектная ориентированность С# позволяет легко создавать собственные приложения.

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-7 Способен создавать программы на языках высокого и низкого уровня, применять методы и инструментальные средства программирования для решения профессиональных задач, осуществлять обоснованный выбор инструментария программирования и способов организации программ.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-7.1 Осуществляет построение алгоритма, проведение его анализа и реализации в современных программных комплексах

ИОПК-7.2 Понимает общие принципы построения и использования языков программирования высокого уровня и низкого уровня

ИОПК-7.3 Демонстрирует навыки создания программ с применением методов и инструментальных средств программирования для решения различных профессиональных, исследовательских и прикладных задач

ИОПК-7.4 Осуществляет обоснованный выбор инструментария программирования и способов организации программ

2. Задачи освоения дисциплины

- Изучить синтаксические основы языка С++.
- Освоить языки программирования С# и Python, а также библиотеки языка Phyton.
- Научиться применять изучаемые языки программирования для решения практических задач профессиональной деятельности.

В результате освоения дисциплины студент должен:

Знать:

- OP-7.2.1. Данные C++, C# и Python.
- OP-7.2.2. Библиотеки NymPy, Pandas, Matplotlib и SciPy для работы с искусственным интеллектом на языке Python.

Уметь:

- OP-7.3.1. Работать с online компиляторами как средствами редактирования, отладки, компиляции и выполнения программ.
- OP-7.4.1. Использовать библиотеки для работы с большими данными и искусственным интеллектом.
- OP-7.1.1. Применять на практике структуры данных для хранения и обработки данных.
 - ОР-7.2.3. Создавать пользовательские классы на С++ и С#.

Владеть:

- ОР-7.1.2. Методами обработки данных различных типов.
- ОР-7.4.2. Методами отладки и тестирования программ.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в «Модуль «Разработка программного обеспечения».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

Четвертый семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Информатика, 1 курс.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- -лекции: 64 ч.
- -лабораторные: 64 ч.

в том числе практическая подготовка: 64 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Третий семестр

Тема 1. Классы и объекты

- 1. Три принципа ООП. Классы и объекты
- 2. Конструкторы и деструкторы
- 3. Перегрузка операций в классе. Основные принципы перегрузки операций.
- 4. Дружественность. Перегрузка потокового ввода и вывода
- 5. Обработка исключительных ситуаций
- 6. Функции-шаблоны и классы шаблоны
- 7. Агрегированные классы
- 8. Статические член-данные и член-функции класса

Тема 2. Наследование

- 9. Базовый и порожденный класс, способы наследования, иерархия порождения. Наследование и агрегирование.
- 10. Конструкторы и деструкторы порожденного класса
- 11. Стандартные преобразования при наследовании
- 12. Множественное наследование, виртуальный базовый класс
- 13. Раннее и позднее связывание. Виртуальные функции. Чистая виртуальная функция и абстрактный класс.
- 14. Библиотека fstream
- 15. Библиотека стандартных шаблонов. Шаблоны vector, list, set, stack, queue

Четвертый семестр

- Тема 1. **Введение в язык С#.** Назначение и особенности данного алгоритмического языка и использование в современном информационном обществе. Структура программы. Базовые элементы и конструкции языка.
- Тема 2. Создание классов. Конструкторы. Перегрузка операторов и методов класса. Классы, объекты. Методы класса. Конструкторы. Оператор this. Перегрузка операторов. Перегрузка методов.
- Тема 3. **Наследование.** Понятие базового класса и класса-наследника. Конструкторы базового и порождённого классов. Переопределение методов.
- Тема 4. **Коллекции и события языка С# и их применение для решения поставленных задач**. Понятие коллекции. Понятие события. Примеры коллекций и событий.
- Тема 5. **Введение в язык Python.** Назначение и особенности данного алгоритмического языка и использование в современном информационном обществе. Структура программы. Базовые элементы и конструкции языка.
- Тема 6. Библиотеки NymPy, Pandas, Matplotlib, SciPy. Использование библиотек для моделирования задач искусственного интеллекта. Знакомство с библиотеками, решение задач.
- Тема 7. **Использование библиотек для работы с большими данными**. Статистическая обработка данных. Решение задач из теории графов для графов большой размерности.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине в третьем семестре проводится путем контроля посещаемости, проведения коллоквиумов и тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр. Практическая подготовка оценивается по результатам выполненных лабораторных работ.

Текущий контроль по дисциплине в четвертом семестре проводится путем контроля посещаемости, проведения контрольной работы в виде теста по лекционному материалу, выполнения лабораторных работ и домашних заданий, решения кейсов, и фиксируется в форме контрольной точки не менее одного раза в семестр. Практическая подготовка оценивается по результатам выполненных лабораторных работ.

Тест оценивается следующим образом:

Отлично – от 97% до 100% правильных ответов

Хорошо – от 90% до 96% правильных ответов

Удовлетворительно – от 70% до 89% правильных ответов

Неудовлетворительно – менее 69% правильных ответов

Практическая подготовка оценивается по результатам выполненных лабораторных работ.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в третьем семестре проводится в письменной форме по билетам. Билет состоит из двух частей.

Первая часть представляет собой два теоретических вопроса. Ответы на вопросы даются в развернутой форме. Вторая часть состоит из практического задания. Ответы на

вопросы второй части предполагают написание программного кода для поставленной задачи и анализ его работы. Оценивается оптимальность выбранного для решения задачи алгоритма и скорость его работы.

Продолжительность зачета 1 час.

Студенты, сдавшие в течение семестра коллоквиумы на положительные оценки и выполнившие все лабораторные работы, получают зачет автоматически

Зачет с оценкой в четвертом семестре выставляется по результатам проверки лабораторных работ и кейсов (70%), и оценки за тест (30%). При этом за задания и кейсы максимально можно набрать 14 баллов. Оценка выставляется следующим образом:

Отлично – от 12 до 14 баллов

Хорошо – от 9 до 11 баллов

Удовлетворительно – от 6 до 8 баллов

Неудовлетворительно – менее 5 баллов

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронные учебные курсы по дисциплине в LMS IDO: третий семестр https://lms.tsu.ru/course/view.php?id=14492 четвертый семестр https://lms.tsu.ru/course/view.php?id=14502
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Лабораторные работы состоят из написания программ для решения поставленной задачи индивидуально или кейса в малых группах (3-4 человека). Для выполнения лабораторной работы необходимо:
 - 1. Прочитать и понять постановку задачи.
- 2. Создать программу, используя указанный или наиболее подходящий для этого алгоритмический язык.
 - 3. Представить работу программы.
 - 4. Текст кода выложить в LMS IDO для оценивания.

Для кейса кроме того составляется отчёт и презентация для небольшого доклада.

- г) На самостоятельную работу выносится окончательное выполнение лабораторных работ и прохождение электронных курсов:
 - Языки программирования https://moodle.tsu.ru/mod/url/view.php?id=275937
 - Создание телеграм-ботов на Python:

https://stepik.org/course/107302/promo?search=1063248817

– Python для искусственного интеллекта:

https://stepik.org/course/110361/promo?search=1063248822

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Огнева М. В. Программирование на языке С++: практический курс: Учебное пособие для вузов / Огнева М. В., Кудрина Е. В. Москва: Юрайт, 2022. 335 с. (Высшее образование). URL: https://urait.ru/bcode/492984.
- Тузовский А. Ф. Объектно-ориентированное программирование: Учебное пособие для вузов / Тузовский А. Ф. Москва: Юрайт, 2022. 206 с. (Высшее образование). URL: https://urait.ru/bcode/490369.
- Солдатенко И. С. Практическое введение в язык программирования Си / Солдатенко И. С., Попов И. В. Санкт-Петербург: Лань, 2021. 132 с. URL: https://e.lanbook.com/book/169287.

- Рацеев С. М. Программирование на языке Си. / Рацеев С. М. Санкт-Петербург: Лань, 2022. 332 с. URL: https://e.lanbook.com/book/193320
- В. В. Андреева, С. И. Самохина, А. Е. Петелин Программирование на языке С#: учебное пособие; М-во науки и высш. образования, Нац. исслед. Том. гос. ун-т. Томск: Издательский Дом Томского государственного университета, 2019. 108 с.
- Мартелли А. Python. Справочник: полное описание языка / Алекс Мартелли, Анна Рейвенскрофт, Стив Холден; перевод с английского А. Г. Гузикевича. 3-е изд. Санкт-Петербург [и др.]: Диалектика, 2019. 892 с.

б) дополнительная литература:

- Комлев Н. Объектно Ориентированное Программирование. Хорошая книга для Хороших Людей: Практическое пособие. Москва: Издательство "СОЛОН-Пресс", 2020. 298 с.. URL: http://znanium.com/catalog/document?id=392258.
- Барков И. А. Объектно-ориентированное программирование: учебник / Барков И. А. Санкт-Петербург: Лань, 2019. 700 с. URL: https://e.lanbook.com/book/119661.
- Баранова И. В. Объектно-ориентированное программирование на C++: Учебник. Красноярск: Сибирский федеральный университет, 2019. 288 с. URL: http://znanium.com/catalog/document?id=380554.
- Ашарина И. В. Язык С++ и объектно-ориентированное программирование в С ++: лабораторный практикум: [учебное пособие для студентов вузов по направлению подготовки 09.03.01 "Информатика и вычислительная техника"] / Ашарина И. В., Крупская Ж. Ф. Москва: Горячая линия Телеком, 2016. 231 с.: ил. (Учебное пособие для высших учебных заведений. Специальность)
- Лафоре Р. Объектно-ориентированное программирование в С++ / Р. Лафоре. 4-е изд. Санкт-Петербург [и др.]: Питер, 2016. 923 с.: ил. (Классика computer science)
- Павловская Т. А. С/С++. Процедурное и объектно-ориентированное программирование: [учебник для студентов вузов по направлению подготовки дипломированных специалистов "Информатика и вычислительная техника": для бакалавров и специалистов] / Татьяна Павловская. Санкт-Петербург [и др.]: Питер, 2015. 495 с.: ил., табл. (Стандарт третьего поколения) (Учебник для вузов)
- Сибирякова В.А., Буторина Н.Б. Основы технологии объектно-ориентированного программирования на языке Си ++. Учебное пособие. Томск: ТГУ, 2007. 112 с.
- Шолле Ф. Глубокое обучение на Python / Франсуа Шолле; [пер. с англ. А. Киселев]. Санкт-Петербург [и др.]: Питер, 2019. 397 с.: ил. (Серия "Библиотека программиста")
- Hetland M. L. Python Algorithms Mastering Basic Algorithms in the Python Language //
 by Magnus Lie Hetland. // Springer eBooks. URL: http://dx.doi.org/10.1007/978-1-4842-0055-1

в) ресурсы сети Интернет:

- Белоцерковская И., Галина Н., Катаева Л. Алгоритмизация. Введение в язык программирования С++ // Национальный Открытый Университет «ИНТУИТ» 2022. URL: https://intuit.ru/studies/courses/16740/1301/info
- Фридман А. Язык программирования C++ // Национальный Открытый Университет «ИНТУИТ» 2022. URL: https://intuit.ru/studies/courses/17/17/info
- Страуструп Б. Язык программирования С++ для профессионалов // Национальный Открытый Университет «ИНТУИТ» 2022. URL: https://intuit.ru/studies/courses/98/98/info
- Павловская Т. Программирование на языке C++ // Национальный Открытый Университет «ИНТУИТ» 2022. URL: https://intuit.ru/studies/courses/626/482/info
- Лесин В. Эффективное использование С++ // Просветительский проект «Лекториум» 2022. URL: https://www.lektorium.tv/course/31228

- Линский Е. Основы С++. І семестр // Просветительский проект «Лекториум» –
 2022. URL: https://www.lektorium.tv/course/22825
- Линский Е. Основы С++. II семестр// Просветительский проект «Лекториум» 2022. URL: https://www.lektorium.tv/course/22858
 - Руководство по С# https://professorweb.ru/my/csharp/charp theory/level1/index.php
 - Языки программирования https://moodle.tsu.ru/mod/url/view.php?id=275937
 - Создание телеграм-ботов на Python

https://stepik.org/course/107302/promo?search=1063248817

- Python для искусственного интеллекта https://stepik.org/course/110361/promo?search=1063248822
 - Руководство по С# https://metanit.com/sharp/tutorial/
- C#отновичкакпрофессионалуhttps://www.youtube.com/watch?v=KyFWqbRfWIA&list=PLQOaTSbfxUtD6kMmAYc8Fooqya3pjLs1N
- Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Visual Studio 2017 (и выше)
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.);
 - on-line компиляторы;
 - GitHub;
 - Jupiter notebook.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для лабораторных работ и самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Самохина Светлана Ивановна, к. ф.-м. н., доцент, доцент кафедры компьютерной безопасности.