Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Практикум по символьным вычислениям

по направлению подготовки

09.03.02 Информационные системы и технологии

Направленность (профиль) подготовки: «Информационные системы и технологии в астрономии и космической геодезии»

Форма обучения Очная

Квалификация Инженер-разработчик информационных технологий

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.М.Сюсина

Председатель УМК О.М. Сюсина

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-5 Способен разрабатывать алгоритмы и программы, пригодные для практического применения в области информационных систем и технологий.
- ПК-2 Способен разрабатывать алгоритмы и программы, применять методы компьютерного моделирования для решения задач профессиональной деятельности

Результатами обучения дисциплины являются::

- РООПК 5.1. Знает алгоритмические языки программирования, операционные системы и платформы, современные среды разработки программного обеспечения;
- − РООПК 5.2. Умеет формулировать требования к прикладному программному обеспечению;
- РООПК 5.3. Умеет разрабатывать алгоритмы и компьютерные программы для практического применения.
 - РОПК 2.1 Знает основы технологии программирования

2. Задачи освоения дисциплины

- Освоить понятия, термины и алгоритмы символьных вычислений на компьютере.
- Научиться применять символьные вычисления для разработки компьютерных программ и их частей при решении практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, является дисциплиной по выбору

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 4, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Математический анализ, Линейная алгебра и аналитическая геометрия, Дифференциальные уравнения, Теория функций комплексного переменного, Программирование, Технологии вычислительной физики, Практикум по вычислительной физике, Практикум по численным методам.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

– практические занятия: 32 ч.;

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Символьные вычисления в MatLab. Введение. MuPAD

Символьные выражения, стандартные функции, простые нестандартные функции. Графики символьных функций

Тема 2. Аналитические преобразования символьных выражений, уравнений, неравенств

Упрощение, приведение подобных, разложение на множители, приведение к общему знаменателю, выделение операндов

Тема 3. Решение алгебраических и трансцендентных уравнений (неравенств) и их систем

Аналитическое решение полиномиальных и трансцендентных уравнений. Аналитическое решение систем линейных, полиномиальных и трансцендентных уравнений. Численное решение полиномиальных и трансцендентных уравнений. Численное решение систем линейных, полиномиальных и трансцендентных уравнений

Тема 4. Решение задач математического анализа

Вычисление сумм и произведений. Вычисление пределов. Дифференцирование. Исследование функции. Поиск экстремумов, точек перегиба, особых точек функции. Построение касательных и асимптот

Тема 5. Решение задач математического анализа (продолжение)

Разложение функции в ряд. Аналитическое вычисление определенных и неопределенных интегралов. Численное интегрирование. Площадь фигуры под кривой. Площадь плоской фигуры, заключенной между двумя кривыми. Положение центра инерции плоской фигуры

Тема 6. Решение задач линейной алгебры

Матрицы и векторы (создание). Изменение матрицы (вектора). Свойства матрицы (вектора). Операции над матрицами (векторами). Вычисление миноров. Решение систем линейных уравнений. Решение матричных уравнений. Собственные векторы и собственные значения матрицы. Векторы и векторные поля

Тема 7. Решение обыкновенных дифференциальных уравнений и их систем

Общее и частное решение обыкновенного дифференциального уравнения в аналитическом виде. Графическое представление аналитического решения обыкновенного дифференциального уравнения. Аналитическое решение систем обыкновенных дифференциальных уравнений. Численное решение обыкновенных дифференциальных уравнений и их систем. Графическое представление численного решения обыкновенного дифференциального уравнения

Тема 8. Интерполяция и полиномиальное представление функций

Интерполяция Лагранжа. Интерполяция сплайнами. Представление функции полиномами в форме Бернштейна

Тема 9. Программирование в MuPAD

Генераторы случайных чисел. Ввод информации с клавиатуры в диалоговом режиме. Вывод информации. Использование внешних файлов для сохранения и загрузки информации. Индексированные переменные. Операторы условного перехода и выбора. Операторы циклов. Нестандартные функции. Контроль продолжительности вычислений

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, защиты решений задач по символьным вычислениям на компьютере, проведения контрольной работы, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Защита решений индивидуальных задач по символьным вычислениям на компьютере проводится путем устного объяснения написанных в программе операторов, функций, использованных алгоритмов и подтверждения достоверности полученных программой результатов. По результатам защиты за каждую задачу выставляется оценка: «зачтено» или «незачтено».

Контрольная работа проводится в форме выполнения задания на компьютере по билетам. Продолжительность контрольной работы: 1,5 часа. Оценивается полнота и корректность выполнения задания, оценка выставляется по 100-бальной шкале.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет выставляется по итогам выполнения контрольной работы и задач в семестре. Для получения итогового балла по дисциплине количество зачтенных задач суммируется с баллами, полученными за контрольную работу.

Результаты зачета определяются оценками «зачтено», «незачтено».

Критерии выставления оценок:

«зачтено» – итоговый балл не менее 100;

«незачтено» – итоговый балл менее 100.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в электронном университете «Moodle» - https://moodle.tsu.ru/course/view.php?id=26374
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

Пример задания для контрольной работы.

Задача 1. Вычислите пределы:

a)
$$\lim_{x \to 0} \frac{\sin 3x}{\sqrt{x+2} - \sqrt{2}}$$
; 6) $\lim_{t \to 0} \frac{\operatorname{tg} t - \int_0^t \cos x \, dx}{t^3}$.

 $\frac{x \to 0}{3}$ **Задача 2.** Аналитически найдите все корни уравнения $\cos^3 \frac{3x}{2} + \cos \frac{3x}{2} = \frac{2}{3}$, принадлежащие отрезку $[-3\pi, 0]$. Для проверки правильности решения постройте график соответствующей функции. Корни уравнения отметьте на графике.

Задача 3. Рассчитайте произведение

$$\prod_{k=1}^{5} z^{-k} \left(\frac{(-1)^k}{z^{k-1}} + \frac{(-1)^k}{z^{k+1}} \right)$$
. Упростите ответ

 $\prod_{k=1}^{5} z^{-k} \left(\frac{(-1)^k}{z^{k-1}} + \frac{(-1)^k}{z^{k+1}} \right)$. Упростите ответ. **Задача 4.** Не решая, выполните необходимые преобразования, чтобы упростить уравнение: $\frac{3}{2}e^{4t}\frac{df(t)}{dt} = f(t)$, где функция $f(t) = e^{4t}$.

Задача 5. Создайте список, состоящий из шести выражений вида: $\frac{k-1}{k+2}$ (где k-1номер элемента списка). Элементы списка с нечетными номерами просуммируйте, а с четными – перемножьте.

Задача 6. Постройте график следующей функции. Для изображения функции используйте темно-зеленый цвет. Отметьте точками черного цвета значения аргументов функции, при которых происходит изменение ст

$$f(x) = \begin{cases} x, & 0 \le x < 1; \\ x^{-2}, & 1 \le x < 2; \\ x^{-3}, & 2 \le x < 3; \\ x^{-1}, & 3 \le x < 4. \end{cases}$$

Задача 7. Вычислите все производные до второго порядка включительно по одному разу по переменным x и y от следующего выражения: $\frac{x^2 + (x+y)^3}{1+xy}$.

Задача 8. Вычислите следующие интегралы:

а) $\int_0^\infty {{\rm e}^{kx}} (1+bx)dx$ при k<0; б) $\int_0^\pi {ds} \int_0^\pi {dt} \ st^{1/2} \sin ks$. При необходимости упростите ответ.

Задача 9. Аналитически решите дифференциальное уравнение: $y''(x) = (1 + x^2) \cdot y(x)$. Выполните проверку, является ли полученное выражение решением данного дифференциального уравнения.

Задача 10. Численно решите систему дифференциальных уравнений: $x'(t) = 2y(t)\sin t$, $y'(t) - \cos x(t) = 1$ при начальных условиях x(0) = 0, y(0) = 1. Постройте графики: а) x(t) и y(t) на одном рисунке; б) график решения в фазовой плоскости (x(t), y(t)). На каждом из графиков точками изобразите начальные условия. С помощью легенды подпишите кривые. Точки графиков соединяйте прямыми. Добейтесь, чтобы решение описывалось гладкими кривыми.

Задача 11. Создайте матрицы A и B и для матрицы $D = (A \cdot B)/4$ вычислите обратную матрицу.

$$A = \begin{pmatrix} 2 & 2 & 4 \\ 1 & 5 & 7 \\ 2 & 8 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 3 & 2 \\ 3 & 1 & 4 \end{pmatrix}.$$

в) План практических занятий по дисциплине.

На практических занятиях студенты на компьютере пишут программы для решения задач по следующим темам:

- Тема 1. Выражения, функции. Графики функций (13 задач)
- Тема 2. Аналитические преобразования выражений, уравнений, неравенств (13 задач)
- Тема 3. Решение алгебраических и трансцендентных уравнений (неравенств) и их систем (12 задач)
 - Тема 4.1. Решение задач математического анализа (15 задач)
 - Тема 4.2. Решение задач математического анализа (продолжение) (14 задач)
 - Тема 5. Решение задач линейной алгебры (14 задач)
- Тема 6. Решение обыкновенных дифференциальных уравнений и их систем (13 задач)
 - Тема 7. Интерполяция и полиномиальное представление функций (5 задач)
 - Тема 8. Программирование в MuPAD (11 задач)
 - Тема 9. Символьные вычисления в MatLab (20 задач)
 - г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студентов осуществляется путем изучения дополнительной литературы и видеоматериалов, свободно размещенных на канале youtube.com.

Самостоятельная работа студентов включает:

- подготовку к практическим занятиям;
- углубленное изучение материала по следующим темам:

Введение в MuPAD

Символьные вычисления в m-файлах MatLab

Символьные вычисления в Maple

Символьные вычисления в Mathematica

On-line сервисы для символьных вычислений

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Ревинская О.Г. Символьные вычисления в MatLab: учеб. пособие. Томск: Издательский Дом Томского государственного университета, 2018. 527 с.: ил. http://chamo.lib.tsu.ru/lib/item?id=chamo:634783&theme=system
- Ревинская О.Г. Символьные вычисления в MatLab: Учебное пособие для вузов. Санкт-Петербург: Лань, 2020. 528 с.

- б) дополнительная литература:
- 1. MuPAD: MatLab Documentation. URL: http://www.mathworks.com/help/symbolic/mupad-1.html
- 2. Symbolic Math Toolbox: MatLab Documentation. URL: http://www.mathworks.com/help/symbolic/index.html
 - 3. Дьяконов В. П. МАТLAB. Полный самоучитель. М.: ДМК Пресс, 2014. 768 с.
 - 4. Амос, Г. МАТLAB. Теория и практика. М.: ДМК Пресс, 2016. 416 с.
- 5. Мещеряков В.В. Задачи по математике с MATLAB&SIMULINK. М.: ДИАЛОГ-МИФИ, 2007. 528 с.
- 6. Ануфриев И.Е., Смирнов А.Б., Смирнова Е.Н. МАТLAВ 7. СПб.: БХВ-Петербург, 2005. 1104 с.
- 7. Половко А.М., Бутусов П.Н. MatLab для студента. СПб.: БХВ-Петербург, 2005. 320 с.
- 8. Корюкина Е.В. Моделирование физических и биологических процессов в системе MAPLE 11: Учебно-методический комплекс. Томск: Институт дистанционного образования Томского государственного университета, 2008. URL: http://ido.tsu.ru/cd-dvd/0/1801/ Доступ из сети ТГУ.
- 9. Ревинская О.Г. Основы программирования в MatLab: Учебное пособие. СПб.: БХВ-Петербург, 2016. 208 с.
- 10. Ревинская О.Г. Введение в практикум по вычислительной математике. Интерполяция и аппроксимация. Решение нелинейных уравнений и их систем. Численное интегрирование и дифференцирование: учебное пособие. Томск: Изд-во НТЛ, 2012. 236 с.
- 11. Авдюшев В.А. Численные методы интегрирования обыкновенных дифференциальных уравнений (ОДУ): Учебно-методический ком-плекс. Томск: Институт дистанционного образования Томского государственного университета, 2009. URL: http://ido.tsu.ru/cd-dvd/0/2488/ Доступ из сети ТГУ.
 - в) ресурсы сети Интернет:
 - Справочная система MatLab на сайте Компании MathWorks на английском языке
 - https://www.mathworks.com/help/matlab/
 - Справочная система MatLab на сайте exponenta.ru на русском языке. https://docs.exponenta.ru/matlab/index.html
- Символьные вычисления в MatLab. Практикум. Ревинская Ольга Геннадьевна https://www.youtube.com/watch?v=UjZyNj_WxRI&list=PLLhZUUoVATUys0ToiAKhTs25OP 3hYjHtG
 - WolframAlpha https://www.wolframalpha.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - MATLAB 2015 (академическая лицензия): язык и среда программирования;
 - Dr. Web: пакет антивирусных программ;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

- Электронная библиотека (репозиторий) ТГУ
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Аудитории для проведения занятий практического типа по программированию (компьютерные классы), оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Ревинская Ольга Геннадьевна, доцент, кандидат педагогических наук, кафедра физики плазмы физического факультета, доцент