Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Процессы теплопередачи в технических устройствах

по направлению подготовки

16.04.01 Техническая физика

Направленность (профиль) подготовки: **Компьютерный инжиниринг высокоэнергетических систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП А.Ю. Крайнов А.В. Шваб Л.Л. Миньков

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен работать в научном коллективе, готов генерировать, оценивать и использовать новые идеи, способен находить творческие, нестандартные решения профессиональных и социальных задач.

ПК-1 Способен составлять теплофизические модели профессиональных задач по определению теплового режима на практике, находить способы их решения и интерпретировать профессиональный, физический смысл полученного математического результата.

ПК-2 Способен самостоятельно применять знания на практике, в том числе составлять математические модели профессиональных задач, находить способы их решения, интерпретировать физический смысл полученного математического результата и документировать его в виде отчета.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 3.1 Знать основные принципы и особенности работы в научном коллективе.
- ИОПК 3.2 Уметь находить творческие, нестандартные решения профессиональных и социальных задач в различных областях технической физики.
- ИОПК 3.3 Владеть навыками генерации, оценивания и использования новых идей в различных областях технической физики.
 - ИПК 1.1 Знать фундаментальные законы теплофизики и их математическое описание применительно к определению тепловых режимов РКТ.
- ИПК 1.2 Уметь составлять математические модели профессиональных задач в области теплофизики и находить способы их решения.
- ИПК 1.3 Владеть навыками численного, компьютерного моделирования задач теплофизики и анализа и интерпретации получаемых результатов.
- ИПК 2.1 Знать способы математического моделирования в области вычислительной теплофизики, аэрогазодинамики, теории горения
- ИПК 2.2 Уметь составлять математические модели профессиональных задач и находить способы их решения
- ИПК 2.3 Владеть навыками анализа и интерпретации результатов математического моделирования

2. Задачи освоения дисциплины

В результате изучения дисциплины обучающийся получит знания по тепло- и массообмену в технических устройствах, освоит способы получения уравнений гидродинамики и газовой динамики, теплофизики, будет знать способы постановки для них задач различного уровня сложности, освоит приемы их численного решения с использованием экономичных алгоритмов. Выбирать адекватные способы и методы решения экспериментальных и теоретических задач, интерпретировать, представлять и применять полученные результаты, анализировать полученные результаты теоретического моделирования.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 18 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Конвективный теплообмен. Основные понятия и определения. Подобие и моделирование процессов конвективного теплообмена. Дифференциальные уравнения конвективного теплообмена. Гидродинамический и тепловой пограничные слои. Турбулентный перенос тепла. Теплоотдача при вынужденном течении жидкости в трубах, при свободном движении жидкости, при течении газа с большой скоростью.

Тема 2. Теплоотдача при фазовых и химических превращениях. Теплообмен при конденсации пара. Теплообмен при кипении жидкости.

Тема 3. Тепло- и массообмен в двухкомпонентных средах. Дифференциальные уравнения тепло- и массообмена. Тепло- и массоотдача. Критерии подобия. Тройная аналогия. Теплообмен излучением между твердыми телами, расположенными в прозрачной среде. Теплообмен в поглощающих и излучающих средах.

Тема 4. Теплообменные аппараты. Холодильные машины. Конденсаторы. Испарители. Градирни. Теплообменные устройства. Воздухоохлаждаемые теплообменники Тепловые трубы. Топки и камеры сгорания. Сушильные установки. Теплообмен в РДТТ, в ЖРД, в ДВС, в АУ, в котлах.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, выполнения элементов курса в образовательной электронной среде, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

a) Электронный учебный курс по дисциплине в электронном университете «iDO» - https://lms.tsu.ru/course/view.php?id=22436

б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Крайнов А.Ю., Моисеева К.М. Конвективный теплоперенос и теплообмен. Учеб. пособие / Томск, 2017.
- 2. Крайнов А.Ю. Основы теплопередачи. теплопередача через слой вещества. Учебное пособие / Томск, 2016
- 3. Князева А.Г. Теплофизические основы современных высокотемпературных технологий. Томск: Изд-во ТПУ. 2009 г. 357 с.
- 4. Ерофеев В.Л. , Семенов П.Д. , Пряхин А.С. Теплотехника: Учебник для ВУЗов. Академкнига, 2008, 488 с.

б) дополнительная литература:

- 1. Самарский А.А. Вабищевич П.Н. Вычислительная теплопередача. М.: Едиториал УРСС, 2003. 784 с.
 - 2. Себеси Т., Брэдшоу. Конвективный теплообмен. М.: Мир,1987.
 - 3. Юдаев Б.Н. Теплопередача. М.: Высшая школа. 1981.-319 с.
 - 4. Петухов Б.С. Вопросы теплообмена. М.: Наука.-1987.-280 с.
 - 5. Лыков А.В. Теория теплопроводности. М.: Высшая школа.-1967.-600с.
 - 6. Нигматулин Р.И. Динамика многофазных сред. Т.1, 2. М.: Наука.-1987.
- 7. Кутателадзе С.С., Накоряков Е.Н. Тепломассообмен и волны в газожидкостных системах. Новосибирск: Наука. 1984. 302 с.
- 8. Дульнев Г.Н., Парфенов В.Г., Сигалов А.В. Применение ЭВМ для решения задач теплообмена. Учебное пособие для теплофизич. и теплоэнергетич спец. вузов. М.: Высшая школа, 1990. 207 с.
- 9. Бурдаков В.П. Авиационная и ракетно-космическая теплотехника. Введение в специальность: Учебное пособие. М.: Изд-во МАИ, 1998. 96 с.: ил.
- 10. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен. Учебное пособие для вузов. 2005.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Крайнов Алексей Юрьевич, д.ф.-м.н., заведующий кафедрой математической физики ФТФ ТГУ