Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Функциональный анализ

по направлению подготовки

01.03.02 Прикладная математика и информатика

Направленность (профиль) подготовки: Математическое моделирование и информационные системы

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП К.И. Лившиц

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

ОПК-3 Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1 Демонстрирует навыки работы с учебной литературой по основным естественнонаучным и математическим дисциплинам.

ИОПК-1.2 Демонстрирует навыки выполнения стандартных действий, решения типовых задач с учетом основных понятий и общих закономерностей, формулируемых в рамках базовых математических и естественнонаучных дисциплин.

ИОПК-1.3 Демонстрирует навыки использования основных понятий, фактов, концепций, принципов математики, информатики и естественных наук для решения практических задач, связанных с прикладной математикой и информатикой.

ИОПК-3.1 Демонстрирует навыки применения современного математического аппарата для построения адекватных математических моделей реальных процессов, объектов и систем в своей предметной области.

ИОПК-3.2 Демонстрирует умение собирать и обрабатывать статистические, экспериментальные, теоретические и т.п. данные для построения математических моделей, расчетов и конкретных практических выводов.

ИОПК-3.3 Демонстрирует способность критически переосмысливать накопленный опыт, модифицировать при необходимости вид и характер разрабатываемой математической модели.

2. Задачи освоения дисциплины

- освоить методы функционального анализа, необходимые как при изучении остальных курсов, так и для решения прикладных задач в разных предметных областях;
- уметь применять понятийный аппарат дисциплины для корректного моделирования на основе вычислительной техники с привлечением теории пределов функций, дифференцирования, интегрирования и разложения функций в ряды

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в модуль Модуль «Математика».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Четвертый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Действительные числа, пределы числовых последовательностей Предел последовательности. Свойства предела.

Тема 2. Действительные функции действительной переменной.

Предел функции и его свойства. Основные типы пределов. Производные и дифференциалы. Исследование функций и построение графиков.

- Тема 3. Интегральное исчисление функций действительной переменной. Неопределенный интеграл. Интегралы Римана, Стилтьеса. Способы вычисления.
- Тема 4. Ряды с действительными и комплексными членами. Функциональные ряды.
 Разложение функций в степенной ряд.
- Тема 5. Дифференциальное исчисление функций нескольких переменных.

Дифференцирование. Обратные отображения и неявные функции. Безусловный и условный экстремум.

Тема 6. Ряды Фурье.

Разложение функций в ряд Фурье. Свойства ряда Фурье. Почленное дифференцирование, интегрирование.

- Тема 7. Интегралы, зависящие от параметра. Свойства, способы вычисления. Гамма и бета функции.
- Тема 8. Кратные интегралы.

Мера Жордана. Интегрирование по измеримым множествам. Свойства интеграла. Методы вычисления.

Тема 9, Теория поля. Криволинейные и поверхностные интегралы.

Свойства интегралов. Способы вычисления. Приложения геометрические и физические.

Тема 10. Теория функций комплексной переменной.

Дифференцирование, интегрирование. Ряд Лорана. Особые точки. Преобразование Фурье и Лапласа.

Тема 12. Дифференциальные уравнения.

Основные типы дифференциальных уравнений первого порядка и способы их решения. Системы линейных дифференциальных уравнений.

Тема 13. Теорема Мерсера.

Тема 14. Теорема Рисса.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в четвёртом семестре проводится в письменной форме по билетам.

Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Примерный перечень теоретических вопросов

- 1.. Производная функции, заданной параметрически.
- 2. Дифференциал функции.
- 3. Производные и дифференциалы высших порядков. Формула Лейбница.
- 4. Теоремы Ферма, Ролля, Лагранжа, Коши.
- 5. Правило Лопиталя.
- 6. Определение точки экстремума.
- 7. Необходимое условие экстремума.
- 8. Достаточные условия экстремума.
- 9. Свойства интеграла Римана как функции верхнего предела интегрирования. Существование

первообразной у интегрируемой, непрерывной функций. Формула Ньютона-Лейбница.

- 10. Замена переменной, интегрирование по частям в определенном интеграле.
- 11. Формула Тейлора с остаточным членом в интегральной форме.
- 12. Геометрические приложения определённого интеграла. Вычисление площади плоских фигур, объема, тела вращения. Спрямляемые кривые; длина кривой.
- 13. Теорема о приведении кратного интеграла к последовательным однократным.
- 14. Формула замены переменной в кратном интеграле.
- 15. Несобственные кратные интегралы.
- 16. Вычисление интеграла Пуассона.
- 17. Криволинейные интегралы первого рода. Определение, свойства. Способ вычисления.
 - 18. Криволинейные интегралы второго рода. Определение, свойства.

Способ вычисления.

- 19. Формула Грина. Вычисление площадей с помощью криволинейных интегралов.
- 20. Теорема о представлении аналитической в круге функции в виде степенного ряда.
- 21. Разложение аналитической функции в ряд Лорана. Нахождение коэффициентов.
 - 22. Изолированные особые точки и их классификация.
 - 23. Преобразование Лапласа. Свойства.
 - 24. Теорема Мерсера.
 - 25. Теорема Рисса.

Примеры задач:

Вариант 1

- 1. Доказать, что пространство $C_2(a,b)$ не полно.
- 2. Является ли d(x,y) метрикой на X=R, где $d(x,y)=|arctg\ x$ $arctg\ y|$.
- 3. Вычислить тройной интеграл:

$$\iiint_{G} \frac{dG}{(1+x+y+z)^{3}}, \text{ если область}$$

интегрирования задана уравнениями: G: x+y=3, x=0, y=2, z=0.

4. Найти объем тела, ограниченного

$$x^2 + y^2 + z^2 = 1,$$

$$x^2 + y^2 + z^2 = 16,$$

поверхностью $z^2 = x^2 + y^2$,

$$y = 0$$
, $z = 0$, $y = x$,

$$x \ge 0, y \ge 0, z \ge 0.$$

Вариант 2

- 1. Доказать, что L_2 входит в L_1 .
- 2. Является ли d(x,y) метрикой на X=R, где $d(x,y)=\min(1,|x-y|)$.
- 3. Вычислить объем тела, ограниченного поверхностями:

$$z = \ln(1 + x^2 + y^2), x^2 + y^2 = 2, z = 0$$

$$\frac{x^2}{a} + \frac{y^2}{b} = 2z, \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

$$z = 0, b > a > 0$$

Вариант 1

- 1. Разложить функцию (-x) в ряд Фурье на отрезке [- π , π] в тригонометрической форме.
- 2. Найти разложение функции $f(x)=a, x \in [-\pi, 0), f(x)=-a, x \in (0, \pi], a>0$ комплексный ряд Фурье.
- 3. Доказать равенство Парсеваля, привести его тригонометрическую и комплексную формы.

Вариант 2

- 1. Разложить функцию f(x)=(x/3) в тригонометрический ряд Фурье на отрезке [-3, 3].
- 2. Разложить функцию f(x)=|x| в ряд Фурье на отрезке [-1, 1] в комплексной форме.
- 3. Доказать, что в пространстве $L_2[-a,a]$ система функций $(1,\cos kt,\sin kt)_{k\in\mathbb{N}}$ ортогональная.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценки при проведении экзамена формируются в соответствии с нижеприведенной таблицей.

2	3	4	5
Не ответил ни на	Ответил на один из	Ответил на вопросы,	Правильно ответил
один из вопросов.	основных вопросов	содержащиеся в	на все вопросы.
	и на один - два	экзаменационном	
	частично.	билете, но с	
		замечаниями.	

Оценочные материалы для проведения промежуточной аттестации размещены на сайте TГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://lms.tsu.ru/course/view.php?id=13801
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (Приложение 1).
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- А.Н. Колмогоров, С.В. Фомин. Элементы теории функций и функционального анализа. М.: Наука. Главная редакция физико-математической литературы. 1976 г.
- Кудрявцев Л.Д. Курс математического анализа Т. 1 М.: Юрайт 2009. 607 с.
- Кудрявцев Л.Д. Курс математического анализа Т. 3 М.: Юрайт 2016. 350 с
- Демидович Б.П. Сборник задач и упражнений по математическому анализу M: Лань 2017. 624 c.
- Свешников, А. Г., Тихонов А.Н. Теория функций комплексной переменной. М: Физматлит 2001. 335 с.
- Филиппов А.Ф. Сборник задач по дифференциальным уравнениям Москва : Ленанд 2015. 235 с.
- Эльсгольц Л.Э. Дифференциальные уравнения М. ЛКИ 2008 309 с.
- б) дополнительная литература:
- В.А.Васильев, В.В.Конев, С.М.Пергаменщиков. "Теорема Гильберта-Шмидта. Разложение Каруннена-Лоэва." Методическое пособие по курсу "Уравнения математической физики. Издательский дом ТГУ, 1987.
- П.Ю.Глазырина, М. В. Дейкалова, Л. Ф. Коркина. Функциональный анализ. Типовые задачи. Екатеринбург. Издательство Уральского университета. 2016.
- Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления .
- Т. 1: учебник: [для студентов университетов, педагогических и технических вузов: в 3 т.] СПб.: Лань 2009. 607 с.
- -Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления .
- Т. 2 : учебник : [для студентов университетов, педагогических и технических вузов : в 3 т.]. СПб. : Лань. 2009. 800 с.
- -Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления.
- Т. 3 : учебник : [для студентов университетов, педагогических и технических вузов : в 3 т.]. СПб. : Лань. 2009. 656 с.
- в) ресурсы сети Интернет:
- 1. Электронная библиотека (репозиторий) ТГУ [Электронный ресурс] / Электронная библиотека (репозиторий) ТГУ : [сайт]. [Томск, 2011–2016]. URL: http://vital.lib.tsu.ru/vital/access/manager/Index.
- 2. http://exponenta.ru

http://www-sbras.nsc.ru/win/mathpub/math_www.html

http://www.mathelp.spb.ru

http://ilib.mccme.ru

http://256bit.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации. Специальные технические средства (проектор, компьютер и т.д.) требуются для демонстрации материала в рамках изучаемых разделов.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Васильев Вячеслав Артурович, д-р физ.-мат. наук, профессор, кафедра системного анализа и математического моделирования, профессор