Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Факультет инновационных технологий

УТВЕРЖДАЮ:

Руководитель ОПОП

О.В. Вусович

2022 r

Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине

Физико-химические методы анализа

по направлению подготовки

27.03.05 Инноватика

Направленность (профиль) подготовки: Управление инновациями в наукоемких технологиях Форма обучения Очная

Квалификация **Бакалавр**

1. Планируемые результаты освоения дисциплины

Результаты освоения дисциплины	Планируемые образовательные результаты (ОР)		
(индикатор достижения компетенции)	обучения по дисциплине		
ИПК-5.1. Знает и умеет анализировать	ОР 5.1.1 Знает и применяет методы физико-		
технико-технологическое решение («лучшие	химического анализа при выполнении		
практики»).	профессиональных задач: оптические,		
	хроматографические, фотохимические,		
	электрохимические.		
ИПК-5.2. Составляет план	ОР 5.2.1 Готов решать типовые учебные задачи по		
экспериментальных работ, проводит	всем разделам физико-химических методов анализа		
эксперименты и обрабатывает результаты.	и использовать приобретенные знания при решении		
	профессиональных задач.		
ИПК-5.3. Проектирует и обосновывает/	ОР 5.3.1 Знает подбирает и обосновывает		
доказывает технико-технологические решения	необходимый физико-химический метод анализа для		
по тематике исследований.	идентификации полученных результатов		
	химического эксперимента.		

2. Этапы достижения образовательных результатов в процессе освоения дисциплины

№	Разделы и(или) темы дисциплин	Образовательные результаты	Формы текущего контроля и промежуточной аттестации
1.	Тема 1. Предмет и задачи физико-химических методов.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Тест на лекции Контрольная работа Экзамен
2.	Тема 2. Погрешности химического анализа.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Тест на лекции Контрольная работа Экзамен
3.	Тема 3. Оптические методы исследования.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Выполнение отчета по лабораторной работы. Тест на лекции Контрольная работа Экзамен
4.	Тема 4. Основные приемы фотометрического определения.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Выполнение отчета по лабораторной работы. Тест на лекции Контрольная работа Экзамен
5.	Тема 5. Хроматографические методы анализа.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Выполнение отчета по лабораторной работы. Тест на лекции Контрольная работа Экзамен
6.	Тема 6. Виды	OP 5.1.1	Текущий контроль:

	хроматографических методов.	OP 5.2.1 OP 5.3.1	Тест на лекции Контрольная работа Экзамен
7.	Тема 7. Электрохимические методы.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Тест на лекции Выполнение отчета по лабораторной работы. Контрольная работа Экзамен
8.	Тема 8. Потенциометрические методы анализа	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Тест на лекции Выполнение отчета по лабораторной работы. Контрольная работа Экзамен
9.	Тема 9. Классификация электродов.	OP 5.1.1 OP 5.2.1 OP 5.3.1	Текущий контроль: Тест на лекции Контрольная работа Экзамен

3. Оценочные средства для проведения текущего контроля и методические материалы, определяющие процедуру их оценивания

Текущий контроль проводится в течение семестра с целью определения уровня усвоения обучающимися знаний, формирования умений и навыков, своевременного выявления преподавателем недостатков в подготовке обучающихся и принятия необходимых мер по ее корректировке, а также для совершенствования методики обучения, организации учебной работы, и фиксируется в форме контрольной точки не менее одного раза в семестр.

4. Оценочные средства для проведения промежуточной аттестации

- 1. Особенности и преимущества инструментальных методов анализа по сравнению с классическими химическими методами.
 - 2. Классификация инструментальных методов анализа.
 - 3. Аналитический сигнал, его получение и измерение.
- 4. Зависимость между аналитическим сигналом и концентрацией определяемого компонента (уравнение связи).
- 5. Приёмы определения неизвестной концентрации компонента в инструментальных методах анализа: методы градуировочного графика, стандартов, добавок и инструментальное титрование.
- 6. Сущность кондуктометрических методов анализа: прямая кондуктометрия и кондуктометрическое титрование.
- 7. Удельная электрическая проводимость как аналитический сигнал, факторы, влияющие на величину сигнала.
 - 8. Зависимость удельной электрической проводимости от концентрации.
- 9. Эквивалентная электрическая проводимость, факторы, влияющие на её величину.
- 10. Измерение аналитического сигнала. Кондуктометрическая ячейка. Современные кондуктометры и кондуктометрические датчики.

11. Прямая кондуктометрия: сущность метода, приёмы нахождения неизвестной концентрации, применение для целей анализа.

Примерный перечень задач

- 1.Вычислите pH раствора, если ЭДС электрохимической ячейки, составленной из BЭ (PH2 = 1 атм) и XCЭ сравнения (EXCЭ = 0.248 B), равна 0.505 B.
- 2. При титровании ионов Fe2+ дихромат-ионами с использованием автоматического титратора выяснилось, что потенциал электрода в конечной точке титрования на 60 мВ ниже теоретического значения потенциала в точке эквивалентности. Принимая реальные потенциалы систем Fe3+/Fe2+ и Cr2O7 2-/2Cr3+ соответственно 0,68 В и 1,06 В, оцените погрешность этого титрования (%).
- 3. Раствор Pb2+ неизвестной концентрации дает диффузионный ток, равный 5,2 мкА. К 100,0 см3 этого раствора добавили 5,0 см3 0,004 моль/дм3 раствора Pb2+ и снова зарегистрировали полярограмму. В этом случае сила диффузионного тока составила 15 мкА. Вычислите концентрацию ионов свинца в исходном растворе.

Результаты зачета с оценкой определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».